These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. Baldwin JM; Schertler GF; Unger VM J Mol Biol; 1997 Sep; 272(1):144-64. PubMed ID: 9299344 [TBL] [Abstract][Full Text] [Related]
4. Structure of the integral membrane domain of the GLP1 receptor. Frimurer TM; Bywater RP Proteins; 1999 Jun; 35(4):375-86. PubMed ID: 10382665 [TBL] [Abstract][Full Text] [Related]
5. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional model for meta-II rhodopsin, an activated G-protein-coupled receptor. Nikiforovich GV; Marshall GR Biochemistry; 2003 Aug; 42(30):9110-20. PubMed ID: 12885244 [TBL] [Abstract][Full Text] [Related]
7. Structure of rhodopsin. Schertler GF Novartis Found Symp; 1999; 224():54-66; discussion 66-9,. PubMed ID: 10614046 [TBL] [Abstract][Full Text] [Related]
8. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
11. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns. Park Y; Helms V Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902 [TBL] [Abstract][Full Text] [Related]
12. Automated method for modeling seven-helix transmembrane receptors from experimental data. Herzyk P; Hubbard RE Biophys J; 1995 Dec; 69(6):2419-42. PubMed ID: 8599649 [TBL] [Abstract][Full Text] [Related]
13. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin. Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473 [TBL] [Abstract][Full Text] [Related]
14. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Ballesteros JA; Shi L; Javitch JA Mol Pharmacol; 2001 Jul; 60(1):1-19. PubMed ID: 11408595 [TBL] [Abstract][Full Text] [Related]
15. A method for alpha-helical integral membrane protein fold prediction. Taylor WR; Jones DT; Green NM Proteins; 1994 Mar; 18(3):281-94. PubMed ID: 8202469 [TBL] [Abstract][Full Text] [Related]
16. Transmembrane alpha-helices in the gap junction membrane channel: systematic search of packing models based on the pair potential function. Nunn RS; Macke TJ; Olson AJ; Yeager M Microsc Res Tech; 2001 Feb; 52(3):344-51. PubMed ID: 11180625 [TBL] [Abstract][Full Text] [Related]
17. Modeling of halorhodopsin and rhodopsin based on bacteriorhodopsin. Neumüller M; Jähnig F Proteins; 1996 Oct; 26(2):146-56. PubMed ID: 8916222 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559 [TBL] [Abstract][Full Text] [Related]
19. Non-alpha-helical elements modulate polytopic membrane protein architecture. Riek RP; Rigoutsos I; Novotny J; Graham RM J Mol Biol; 2001 Feb; 306(2):349-62. PubMed ID: 11237604 [TBL] [Abstract][Full Text] [Related]
20. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]