These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 9710576)
1. Site-selective control of the reactivity of surface-exposed histidine residues in designed four-helix-bundle catalysts. Broo KS; Brive L; Sott RS; Baltzer L Fold Des; 1998; 3(4):303-12. PubMed ID: 9710576 [TBL] [Abstract][Full Text] [Related]
2. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization. Andersson LK; Caspersson M; Baltzer L Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296 [TBL] [Abstract][Full Text] [Related]
3. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold. Allert M; Baltzer L Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334 [TBL] [Abstract][Full Text] [Related]
4. The pH-dependent tertiary structure of a designed helix-loop-helix dimer. Dolphin GT; Baltzer L Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715 [TBL] [Abstract][Full Text] [Related]
5. Designed four-helix bundle catalysts--the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters. Baltzer L; Broo KS; Nilsson H; Nilsson J Bioorg Med Chem; 1999 Jan; 7(1):83-91. PubMed ID: 10199659 [TBL] [Abstract][Full Text] [Related]
6. Use of 1H NMR spectroscopy and computer simulations To analyze histidine pKa changes in a protein tyrosine phosphatase: experimental and theoretical determination of electrostatic properties in a small protein. Tishmack PA; Bashford D; Harms E; Van Etten RL Biochemistry; 1997 Sep; 36(39):11984-94. PubMed ID: 9305993 [TBL] [Abstract][Full Text] [Related]
7. pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy. Pogostin BH; Malmendal A; Londergan CH; Ã…kerfeldt KS Molecules; 2019 Jan; 24(3):. PubMed ID: 30678032 [TBL] [Abstract][Full Text] [Related]
8. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU; Forman-Kay JD Protein Sci; 1997 Sep; 6(9):1910-9. PubMed ID: 9300491 [TBL] [Abstract][Full Text] [Related]
9. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges. Armstrong KM; Baldwin RL Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11337-40. PubMed ID: 8248249 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Takahashi T; Nakamura H; Wada A Biopolymers; 1992 Aug; 32(8):897-909. PubMed ID: 1420975 [TBL] [Abstract][Full Text] [Related]
11. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction. Lew S; Caputo GA; London E Biochemistry; 2003 Sep; 42(36):10833-42. PubMed ID: 12962508 [TBL] [Abstract][Full Text] [Related]
12. Probing electrostatic interactions along the reaction pathway of a glycoside hydrolase: histidine characterization by NMR spectroscopy. Schubert M; Poon DK; Wicki J; Tarling CA; Kwan EM; Nielsen JE; Withers SG; McIntosh LP Biochemistry; 2007 Jun; 46(25):7383-95. PubMed ID: 17547373 [TBL] [Abstract][Full Text] [Related]
13. Design and synthesis of de novo cytochromes c. Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636 [TBL] [Abstract][Full Text] [Related]
14. Direct evidence for the exploitation of an alpha-helix in the catalytic mechanism of triosephosphate isomerase. Lodi PJ; Knowles JR Biochemistry; 1993 Apr; 32(16):4338-43. PubMed ID: 8476863 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of a designed helix-loop-helix dimer in dilute aqueous trifluoroethanol solution. A strategy for NMR spectroscopic structure determination of molten globules in the rational design of native-like proteins. Olofsson S; Baltzer L Fold Des; 1996; 1(5):347-56. PubMed ID: 9080181 [TBL] [Abstract][Full Text] [Related]
16. Noncovalent binding of a reaction intermediate by a designed helix-loop-helix motif-implications for catalyst design. Allert M; Baltzer L Chembiochem; 2003 Apr; 4(4):306-18. PubMed ID: 12672110 [TBL] [Abstract][Full Text] [Related]
17. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein. Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107 [TBL] [Abstract][Full Text] [Related]
18. Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Razeghifard MR; Wydrzynski T Biochemistry; 2003 Feb; 42(4):1024-30. PubMed ID: 12549923 [TBL] [Abstract][Full Text] [Related]
19. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. Kortemme T; Creighton TE J Mol Biol; 1995 Nov; 253(5):799-812. PubMed ID: 7473753 [TBL] [Abstract][Full Text] [Related]
20. An examination of glutamic acid in the -X chelating position of the helix-loop-helix calcium binding motif. Procyshyn RM; Reid RE Arch Biochem Biophys; 1994 Jun; 311(2):425-9. PubMed ID: 7911293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]