These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 9711026)

  • 41. Adaptation of trigeminal ganglion cells to periodic whisker deflections.
    Fraser G; Hartings JA; Simons DJ
    Somatosens Mot Res; 2006; 23(3-4):111-8. PubMed ID: 17178546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern.
    Ohsaki K; Nakamura S
    Neuroscience; 2006 Sep; 141(4):1899-908. PubMed ID: 16808999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury.
    Nosrat IV; Widenfalk J; Olson L; Nosrat CA
    Dev Biol; 2001 Oct; 238(1):120-32. PubMed ID: 11783998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of FGF10 by POU transcription factor Brn3a in the developing trigeminal ganglion.
    Cox E; Lanier J; Quina L; Eng SR; Turner EE
    J Neurobiol; 2006 Sep; 66(10):1075-83. PubMed ID: 16838370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of rodent whisking: trigeminal input and central pattern generation.
    Landers M; Philip Zeigler H
    Somatosens Mot Res; 2006; 23(1-2):1-10. PubMed ID: 16846954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vibrissa sensory neurons: Linking distinct morphology to specific physiology and function.
    Takatoh J; Prevosto V; Wang F
    Neuroscience; 2018 Jan; 368():109-114. PubMed ID: 28673712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The trigeminal system: an advantageous experimental model for studying neuronal development.
    Davies AM
    Development; 1988; 103 Suppl():175-83. PubMed ID: 3074907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The trigeminal ganglion in human embryos at stage 16th and 17th (6th week). Light microscopic study.
    Bruska M; Woźniak W
    Folia Morphol (Warsz); 1988; 47(1-4):51-8. PubMed ID: 3267629
    [No Abstract]   [Full Text] [Related]  

  • 49. An Artificial Vibrissa-Like Sensor for Detection of Flows.
    Scharff M; Schorr P; Becker T; Resagk C; Alencastre Miranda JH; Behn C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31509939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The postnatal growth of the nerves of vibrissae.
    FITZGERALD MJ
    J Anat; 1962 Oct; 96(Pt 4):521-5. PubMed ID: 13945355
    [No Abstract]   [Full Text] [Related]  

  • 51. The Central Connections and Relations of the Trigeminal, Vago-Glossopharyngeal, Vago-Accessory, and Hypoglossal Nerves.
    Turner WA
    J Anat Physiol; 1894 Oct; 29(Pt 1):1-15. PubMed ID: 17232109
    [No Abstract]   [Full Text] [Related]  

  • 52. The development and plasticity of peripheral and central connections of primary sensory neurons.
    Fitzgerald M
    Restor Neurol Neurosci; 1993 Jan; 5(1):8-9. PubMed ID: 21551682
    [No Abstract]   [Full Text] [Related]  

  • 53. Selection for an invariant character; vibrissa number in the house mouse.
    DUN RB; FRASER AS
    Nature; 1958 Apr; 181(4614):1018-9. PubMed ID: 13541353
    [No Abstract]   [Full Text] [Related]  

  • 54. Selection for an invariant character, vibrissa number in the house mouse. V. Selection on non-tabby segregants from tabby selection lines.
    Kindred B
    Genetics; 1967 Feb; 55(2):365-73. PubMed ID: 6029980
    [No Abstract]   [Full Text] [Related]  

  • 55. Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa Movement.
    Bellavance MA; Takatoh J; Lu J; Demers M; Kleinfeld D; Wang F; Deschênes M
    Neuron; 2017 Aug; 95(3):722-723. PubMed ID: 28772127
    [No Abstract]   [Full Text] [Related]  

  • 56. Differential fasciculation of follicular nerves for transferring specifically localized cues of the vibrissa rudiments to the central trigeminal sensory system in mice, as exploited with DiI and DiA labeling.
    Yamakado M; Honzawa K; Tsuchiya H
    Kaibogaku Zasshi; 1998 Jun; 73(3):209-21. PubMed ID: 9711026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissa follicle nerves in the adult rat.
    Klein BG; Renehan WE; Jacquin MF; Rhoades RW
    J Comp Neurol; 1988 Feb; 268(4):469-88. PubMed ID: 2451683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trigeminal ganglion cell processes are spatially ordered prior to the differentiation of the vibrissa pad.
    Erzurumlu RS; Jhaveri S
    J Neurosci; 1992 Oct; 12(10):3946-55. PubMed ID: 1403092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Innervation of the maxillary vibrissae in mice as revealed by anterograde and retrograde tract tracing.
    Maklad A; Fritzsch B; Hansen LA
    Cell Tissue Res; 2004 Feb; 315(2):167-80. PubMed ID: 14610665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frequency-dependent processing in the vibrissa sensory system.
    Moore CI
    J Neurophysiol; 2004 Jun; 91(6):2390-9. PubMed ID: 15136599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.