These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9711302)

  • 1. Determination of mitochondrial creatine kinase fluxes in intact heart mitochondria using 31P-saturation transfer nuclear magnetic resonance spectroscopy.
    Jahnke D; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1998 Jul; 1365(3):503-12. PubMed ID: 9711302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P-NMR.
    van Dorsten FA; Furter R; Bijkerk M; Wallimann T; Nicolay K
    Biochim Biophys Acta; 1996 May; 1274(1-2):59-66. PubMed ID: 8645695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy.
    Zahler R; Ingwall JS
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1022-8. PubMed ID: 1566885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac creatine kinase metabolite compartments revealed by NMR magnetization transfer spectroscopy and subcellular fractionation.
    Joubert F; Vrezas I; Mateo P; Gillet B; Beloeil JC; Soboll S; Hoerter JA
    Biochemistry; 2001 Feb; 40(7):2129-37. PubMed ID: 11329281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    J Biol Chem; 2002 May; 277(21):18469-76. PubMed ID: 11886866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase.
    Perry SB; McAuliffe J; Balschi JA; Hickey PR; Ingwall JS
    Biochemistry; 1988 Mar; 27(6):2165-72. PubMed ID: 3378051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of subcellular energy fluxes by P NMR spectroscopy in the perfused heart: contractility induced modifications of energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    Mol Biol Rep; 2002; 29(1-2):171-6. PubMed ID: 12241052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle.
    Shoubridge EA; Bland JL; Radda GK
    Biochim Biophys Acta; 1984 Sep; 805(1):72-8. PubMed ID: 6477973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: a new method of analysis.
    Joubert F; Hoerter JA; Mazet JL
    Biophys J; 2001 Dec; 81(6):2995-3004. PubMed ID: 11720970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.