BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 9711545)

  • 1. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli.
    Boos W
    Methods Enzymol; 1998; 292():40-51. PubMed ID: 9711545
    [No Abstract]   [Full Text] [Related]  

  • 2. A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool.
    Wilken S; Schmees G; Schneider E
    Mol Microbiol; 1996 Nov; 22(4):655-66. PubMed ID: 8951813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.
    Hekstra D; Tommassen J
    J Bacteriol; 1993 Oct; 175(20):6546-52. PubMed ID: 8407831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon.
    Puyet A; Espinosa M
    J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphate-binding protein of Escherichia coli is not essential for P(i)-regulated expression of the pho regulon.
    Hoffer SM; Tommassen J
    J Bacteriol; 2001 Oct; 183(19):5768-71. PubMed ID: 11544243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External-pH-dependent expression of the maltose regulon and ompF gene in Escherichia coli is affected by the level of glycerol kinase, encoded by glpK.
    Chagneau C; Heyde M; Alonso S; Portalier R; Laloi P
    J Bacteriol; 2001 Oct; 183(19):5675-83. PubMed ID: 11544231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ).
    Merlin C; Gardiner G; Durand S; Masters M
    J Bacteriol; 2002 Oct; 184(19):5513-7. PubMed ID: 12218041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2 ) of Escherichia coli.
    Wuttge S; Bommer M; Jäger F; Martins BM; Jacob S; Licht A; Scheffel F; Dobbek H; Schneider E
    Mol Microbiol; 2012 Nov; 86(4):908-20. PubMed ID: 23013274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol-3-phosphate transport system of Escherichia coli.
    Schweizer H; Grussenmeyer T; Boos W
    J Bacteriol; 1982 Jun; 150(3):1164-71. PubMed ID: 6281238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maltose transport in Escherichia coli: mutations that uncouple ATP hydrolysis from transport.
    Panagiotidis CH; Shuman HA
    Methods Enzymol; 1998; 292():30-9. PubMed ID: 9711544
    [No Abstract]   [Full Text] [Related]  

  • 11. Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc.
    Decker K; Plumbridge J; Boos W
    Mol Microbiol; 1998 Jan; 27(2):381-90. PubMed ID: 9484893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.
    Hengge R; Boos W
    Biochim Biophys Acta; 1983 Aug; 737(3-4):443-78. PubMed ID: 6349688
    [No Abstract]   [Full Text] [Related]  

  • 13. MalFGK complex assembly and transport and regulatory characteristics of MalK insertion mutants.
    Lippincott J; Traxler B
    J Bacteriol; 1997 Feb; 179(4):1337-43. PubMed ID: 9023220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ugp, the sn-glycerol-3-phosphate transport system of Escherichia coli K-12 that is part of the pho regulon.
    Schweizer H; Boos W
    J Bacteriol; 1985 Jul; 163(1):392-4. PubMed ID: 3891739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations.
    Kühnau S; Reyes M; Sievertsen A; Shuman HA; Boos W
    J Bacteriol; 1991 Apr; 173(7):2180-6. PubMed ID: 2007546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system.
    Merino G; Shuman HA
    J Bacteriol; 1997 Dec; 179(24):7687-94. PubMed ID: 9401026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation by gene amplification of pitB, encoding a third phosphate transporter of Escherichia coli K-12.
    Hoffer SM; Schoondermark P; van Veen HW; Tommassen J
    J Bacteriol; 2001 Aug; 183(15):4659-63. PubMed ID: 11443103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell envelope proteins involved in the transport of maltose and sn-glycerol-3-phosphate in Escherichia coli.
    Boos W
    J Cell Physiol; 1976 Dec; 89(4):529-41. PubMed ID: 795812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits.
    Mourez M; Hofnung M; Dassa E
    EMBO J; 1997 Jun; 16(11):3066-77. PubMed ID: 9214624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.