BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9711587)

  • 1. Heterologous expression systems for study of cystic fibrosis transmembrane conductance regulator.
    Chang XB; Kartner N; Seibert FS; Aleksandrov AA; Kloser AW; Kiser GL; Riordan JR
    Methods Enzymol; 1998; 292():616-29. PubMed ID: 9711587
    [No Abstract]   [Full Text] [Related]  

  • 2. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel.
    Hanrahan JW; Kone Z; Mathews CJ; Luo J; Jia Y; Linsdell P
    Methods Enzymol; 1998; 293():169-94. PubMed ID: 9711609
    [No Abstract]   [Full Text] [Related]  

  • 4. FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR.
    Schultz BD; Takahashi A; Liu C; Frizzell RA; Howard M
    Am J Physiol; 1997 Dec; 273(6):C2080-9. PubMed ID: 9435515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant synthesis of cystic fibrosis transmembrane conductance regulator and functional nucleotide-binding domains.
    King SA; Sorscher EJ
    Methods Enzymol; 1998; 292():686-97. PubMed ID: 9711592
    [No Abstract]   [Full Text] [Related]  

  • 6. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
    McNicholas CM; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8083-8. PubMed ID: 8755607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human epithelial cystic fibrosis transmembrane conductance regulator without exon 5 maintains partial chloride channel function in intracellular membranes.
    Xie J; Drumm ML; Zhao J; Ma J; Davis PB
    Biophys J; 1996 Dec; 71(6):3148-56. PubMed ID: 8968585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rectification of cystic fibrosis transmembrane conductance regulator chloride channel mediated by extracellular divalent cations.
    Zhao J; Zerhusen B; Xie J; Drumm ML; Davis PB; Ma J
    Biophys J; 1996 Nov; 71(5):2458-66. PubMed ID: 8913585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR.
    Li C; Ramjeesingh M; Reyes E; Jensen T; Chang X; Rommens JM; Bear CE
    Nat Genet; 1993 Apr; 3(4):311-6. PubMed ID: 7526932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.
    Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA
    J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene.
    Tabcharani JA; Chang XB; Riordan JR; Hanrahan JW
    Nature; 1991 Aug; 352(6336):628-31. PubMed ID: 1714039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes.
    Mall M; Hipper A; Greger R; Kunzelmann K
    FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory role of polycystin-1 on cystic fibrosis transmembrane conductance regulator plasma membrane expression.
    Ikeda M; Fong P; Cheng J; Boletta A; Qian F; Zhang XM; Cai H; Germino GG; Guggino WB
    Cell Physiol Biochem; 2006; 18(1-3):9-20. PubMed ID: 16914886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator.
    Huang P; Liu Q; Scarborough GA
    Anal Biochem; 1998 May; 259(1):89-97. PubMed ID: 9606148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC).
    Mo L; Wills NK
    J Membr Biol; 2004 Nov; 202(1):21-37. PubMed ID: 15702377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter.
    van Kuijck MA; van Aubel RA; Busch AE; Lang F; Russel FG; Bindels RJ; van Os CH; Deen PM
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5401-6. PubMed ID: 8643587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of cystic fibrosis transmembrane conductance regulator alters the responses to hypotonic cell swelling and ATP of Chinese hamster ovary cells.
    Thiele IE; Hug MJ; Hübner M; Greger R
    Cell Physiol Biochem; 1998; 8(1-2):61-74. PubMed ID: 9547020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator.
    Vennekens R; Trouet D; Vankeerberghen A; Voets T; Cuppens H; Eggermont J; Cassiman JJ; Droogmans G; Nilius B
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):75-85. PubMed ID: 9925879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator.
    Rommens JM; Dho S; Bear CE; Kartner N; Kennedy D; Riordan JR; Tsui LC; Foskett JK
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7500-4. PubMed ID: 1715567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.