These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9711723)

  • 1. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.
    Howard MA; Volkov IO; Noh MD; Granner MA; Mirsky R; Garell PC
    Stereotact Funct Neurosurg; 1997; 68(1-4 Pt 1):236-42. PubMed ID: 9711723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid clinical-research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons. Technical note.
    Howard MA; Volkov IO; Granner MA; Damasio HM; Ollendieck MC; Bakken HE
    J Neurosurg; 1996 Jan; 84(1):129-32. PubMed ID: 8613821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated multipurpose lesion-making electrode.
    Howard MA; Reed LK; Mirsky R; Abkes BA; Volkov IO
    Neurosurgery; 1998 Jan; 42(1):137-40; discussion 141-2. PubMed ID: 9442515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial neuronal ensemble recordings and analysis in epilepsy.
    Tóth E; Fabó D; Entz L; Ulbert I; Erőss L
    J Neurosci Methods; 2016 Feb; 260():261-9. PubMed ID: 26453987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial video-EEG monitoring in presurgical evaluation of patients with refractory epilepsy.
    Hupalo M; Wojcik R; Jaskolski DJ
    Neurol Neurochir Pol; 2017; 51(3):201-207. PubMed ID: 28279512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience.
    Lehongre K; Lambrecq V; Whitmarsh S; Frazzini V; Cousyn L; Soleil D; Fernandez-Vidal S; Mathon B; Houot M; Lemaréchal JD; Clemenceau S; Hasboun D; Adam C; Navarro V
    Neuroimage; 2022 Jul; 254():119116. PubMed ID: 35318150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial surgical experience with a dense cortical microarray in epileptic patients undergoing craniotomy for subdural electrode implantation.
    Waziri A; Schevon CA; Cappell J; Emerson RG; McKhann GM; Goodman RR
    Neurosurgery; 2009 Mar; 64(3):540-5; discussion 545. PubMed ID: 19240617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous recording of single-neuron activities and broad-area intracranial electroencephalography: electrode design and implantation procedure.
    Matsuo T; Kawai K; Uno T; Kunii N; Miyakawa N; Usami K; Kawasaki K; Hasegawa I; Saito N
    Neurosurgery; 2013 Dec; 73(2 Suppl Operative):ons146-54. PubMed ID: 23632765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials.
    Lopour BA; Staba RJ; Stern JM; Fried I; Ringach DL
    J Neural Eng; 2016 Apr; 13(2):026031. PubMed ID: 26975603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resection of the epileptogenic area in critical cortex with the aid of a subdural electrode grid.
    Uematsu S; Lesser R; Fisher R; Krauss G; Hart J; Vining EP; Freeman J; Gordon B
    Stereotact Funct Neurosurg; 1990; 54-55():34-45. PubMed ID: 2080351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic subdural electrodes in the management of epilepsy.
    Nair DR; Burgess R; McIntyre CC; Lüders H
    Clin Neurophysiol; 2008 Jan; 119(1):11-28. PubMed ID: 18035590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety of hybrid electrodes for single-neuron recordings in humans.
    Hefft S; Brandt A; Zwick S; von Elverfeldt D; Mader I; Cordeiro J; Trippel M; Blumberg J; Schulze-Bonhage A
    Neurosurgery; 2013 Jul; 73(1):78-85; discussion 85. PubMed ID: 23615097
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.