These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 971217)

  • 1. [Recording of ventricular pressure by conventional catheter manometer systems. Efficiency of several combinations of conventional catheters, modern transducers and catheter-flush systems (author's transl)].
    Hellige G
    Basic Res Cardiol; 1976; 71(4):389-406. PubMed ID: 971217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recording of ventricular pressure by conventional catheter manometer systems. I. Minimal requirements of blood pressure recording systems and estimation of frequency response characteristics].
    Hellige G
    Basic Res Cardiol; 1976; 71(3):319-36. PubMed ID: 938441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency response evaluation of radial artery catheter-manometer systems: sinusoidal frequency analysis versus flush method.
    Schwid HA
    J Clin Monit; 1988 Jul; 4(3):181-5. PubMed ID: 3210066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent pressure distortion in a catheter-transducer system: correction by fast flush.
    Promonet C; Anglade D; Menaouar A; Bayat S; Durand M; Eberhard A; Grimbert FA
    Anesthesiology; 2000 Jan; 92(1):208-18. PubMed ID: 10638918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of catheter-manometer systems for adequate intravascular blood pressure measurements in small animals.
    Idvall J; Aronsen KF; Lindström K; Ulmsten U
    Res Exp Med (Berl); 1977 Sep; 171(2):101-10. PubMed ID: 928971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fast flush test: evaluation in radial artery catheter-manometer systems.
    Sheahan NF; Tuohy B; Kirkham R; Coakley D; Malone J
    Clin Phys Physiol Meas; 1991 Aug; 12(3):247-52. PubMed ID: 1934911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The frequency response of external transducer blood pressure measurement systems: a theoretical and experimental study.
    Yeomanson CW; Evans DH
    Clin Phys Physiol Meas; 1983 Nov; 4(4):435-49. PubMed ID: 6653046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of arterial pressure using catheter-transducer systems. Improvement using the Accudynamic.
    Allan MW; Gray WM; Asbury AJ
    Br J Anaesth; 1988 Mar; 60(4):413-8. PubMed ID: 3355737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Systemic error during measurement of dp/dt using conventional heart catheters and their correction].
    Hampel H; Siegert M; Jarofke R
    Z Kardiol; 1975 Jan; 64(1):83-91. PubMed ID: 1114866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental analysis of catheter-manometer systems in vitro and in vivo.
    Hipkins SF; Rutten AJ; Runciman WB
    Anesthesiology; 1989 Dec; 71(6):893-906. PubMed ID: 2589678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A catheter-manometer calibrator--a new clinical instrument.
    Asmussen M; Lindström K; Ulmsten U
    Biomed Eng; 1975 May; 10(5):175-80. PubMed ID: 1125361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraurethral pressure recording. A comparison betwen tip-transducer catheters and open-end catheters with constant flow.
    Asmussen M
    Scand J Urol Nephrol; 1976; 10(1):1-6. PubMed ID: 944949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency response of fluid-filled catheter-micromanometer systems used for measurement of left ventricular pressure.
    Scruggs V; Pietras RJ; Rosen KM
    Am Heart J; 1975 May; 89(5):619-24. PubMed ID: 1119370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Availability of intraarterial pressure waveforms from catheter-manometer systems during surgery.
    Wesseling KH; Smith NT
    J Clin Monit; 1985 Jan; 1(1):11-6. PubMed ID: 4093785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin fluid-filled catheters for more accurate determination of pressures and their time derivatives.
    Lomholt N; Bille-Brahe NE; Andersen HR; Djuurhus JC; Bredgaard M
    Acta Chir Scand Suppl; 1980; 502():27-32. PubMed ID: 6941598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive estimation of the instantaneous first derivative of left ventricular pressure using continuous-wave Doppler echocardiography.
    Chen C; Rodriguez L; Guerrero JL; Marshall S; Levine RA; Weyman AE; Thomas JD
    Circulation; 1991 Jun; 83(6):2101-10. PubMed ID: 2040059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of fast flush and square wave testing of blood pressure monitoring systems.
    Kleinman B; Powell S; Gardner RM
    J Clin Monit; 1996 Mar; 12(2):149-54. PubMed ID: 8823635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined fluid-filled and micromanometer-tip catheter system for high-fidelity pressure recordings in infants.
    Colan SD
    Cathet Cardiovasc Diagn; 1984; 10(6):619-23. PubMed ID: 6509547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fast flush test measures the dynamic response of the entire blood pressure monitoring system.
    Kleinman B; Powell S; Kumar P; Gardner RM
    Anesthesiology; 1992 Dec; 77(6):1215-20. PubMed ID: 1466471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of air introduction in catheter-manometer systems for accurate neonatal blood pressure measurement: an in vitro study.
    van Genderingen HR; Gevers M; Hack WW
    J Clin Monit; 1994 Jan; 10(1):35-8. PubMed ID: 8126536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.