These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9712646)

  • 1. Evidence for opening of hair-cell transducer channels after tip-link loss.
    Meyer J; Furness DN; Zenner HP; Hackney CM; Gummer AW
    J Neurosci; 1998 Sep; 18(17):6748-56. PubMed ID: 9712646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abolition of the receptor potential response of isolated mammalian outer hair cells by hair-bundle treatment with elastase: a test of the tip-link hypothesis.
    Preyer S; Hemmert W; Zenner HP; Gummer AW
    Hear Res; 1995 Sep; 89(1-2):187-93. PubMed ID: 8600125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonic mechanosensitivity of outer hair cells after loss of tip links.
    Meyer J; Preyer S; Hofmann SI; Gummer AW
    Hear Res; 2005 Apr; 202(1-2):97-113. PubMed ID: 15811703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel.
    Marcotti W; Corns LF; Desmonds T; Kirkwood NK; Richardson GP; Kros CJ
    J Neurosci; 2014 Apr; 34(16):5505-14. PubMed ID: 24741041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    J Neurosci; 2016 Jan; 36(2):336-49. PubMed ID: 26758827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of broken tip links and restoration of mechanical transduction in hair cells.
    Zhao Y; Yamoah EN; Gillespie PG
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15469-74. PubMed ID: 8986835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binding site on cochlear stereocilia for antisera raised against renal Na+ channels is blocked by amiloride and dihydrostreptomycin.
    Furness DN; Hackney CM; Benos DJ
    Hear Res; 1996 Apr; 93(1-2):136-46. PubMed ID: 8735075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells.
    Hackney CM; Furness DN; Benos DJ; Woodley JF; Barratt J
    Proc Biol Sci; 1992 Jun; 248(1323):215-21. PubMed ID: 1354359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle.
    Hackney CM; Furness DN
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C1-13. PubMed ID: 7840137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN; Zetes DE; Hackney CM; Steele CR
    Proc Biol Sci; 1997 Jan; 264(1378):45-51. PubMed ID: 9061959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localisation of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy.
    Hackney CM; Furness DN; Benos DJ
    Scanning Microsc; 1991 Sep; 5(3):741-5; discussion 745-6. PubMed ID: 1808712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction.
    Gianoli F; Risler T; Kozlov AS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E11010-E11019. PubMed ID: 29217640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tip-link integrity and mechanical transduction in vertebrate hair cells.
    Assad JA; Shepherd GM; Corey DP
    Neuron; 1991 Dec; 7(6):985-94. PubMed ID: 1764247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Are tip links the basis for mechanosensitivity of hair cells?].
    Gitter AH
    HNO; 1994 Jun; 42(6):327-33. PubMed ID: 7520893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane current possessing the properties of a mechano-electric transducer current in inner hair cells of guinea-pig cochlea.
    Kimitsuki T; Nishida M; Kawano H; Haruta A; Matsuda K; Komune S
    Brain Res; 2001 Oct; 915(1):101-3. PubMed ID: 11578625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and regeneration of sensory transduction in auditory hair cells requires functional interaction between cadherin-23 and protocadherin-15.
    Lelli A; Kazmierczak P; Kawashima Y; Müller U; Holt JR
    J Neurosci; 2010 Aug; 30(34):11259-69. PubMed ID: 20739546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
    Bormuth V; Barral J; Joanny JF; Jülicher F; Martin P
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7185-90. PubMed ID: 24799674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast recovery of disrupted tip links induced by mechanical displacement of hair bundles.
    Alonso RG; Tobin M; Martin P; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30722-30727. PubMed ID: 33199645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.