These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 9714164)
1. Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and beta-sheet DNA binding proteins. Acebo P; García de Lacoba M; Rivas G; Andreu JM; Espinosa M; del Solar G Proteins; 1998 Aug; 32(2):248-61. PubMed ID: 9714164 [TBL] [Abstract][Full Text] [Related]
2. Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides. Costa M; Solà M; del Solar G; Eritja R; Hernández-Arriaga AM; Espinosa M; Gomis-Rüth FX; Coll M J Mol Biol; 2001 Jul; 310(2):403-17. PubMed ID: 11428897 [TBL] [Abstract][Full Text] [Related]
3. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. Gomis-Rüth FX; Solá M; Acebo P; Párraga A; Guasch A; Eritja R; González A; Espinosa M; del Solar G; Coll M EMBO J; 1998 Dec; 17(24):7404-15. PubMed ID: 9857196 [TBL] [Abstract][Full Text] [Related]
4. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the pMV158-encoded plasmid transcriptional repressor protein CopG. Gomis-Rüth FX; Solà M; Pérez-Luque R; Acebo P; Alda MT; González A; Espinosa M; del Solar G; Coll M FEBS Lett; 1998 Mar; 425(1):161-5. PubMed ID: 9541028 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution. Murayama K; Orth P; de la Hoz AB; Alonso JC; Saenger W J Mol Biol; 2001 Dec; 314(4):789-96. PubMed ID: 11733997 [TBL] [Abstract][Full Text] [Related]
7. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. Hamed MY; Al-Jabour S J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional repressor CopR: dissection of stabilizing motifs within the C terminus. Kuhn K; Steinmetzer K; Brantl S Microbiology (Reading); 2001 Dec; 147(Pt 12):3387-92. PubMed ID: 11739771 [TBL] [Abstract][Full Text] [Related]
9. Sequence analysis of a small cryptic plasmid isolated from Streptococcus suis serotype 2. Takamatsu D; Osaki M; Sekizaki T Curr Microbiol; 2000 Jan; 40(1):61-6. PubMed ID: 10568806 [TBL] [Abstract][Full Text] [Related]
10. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential Ruiz-Masó JÁ; Luengo LM; Moreno-Córdoba I; Díaz-Orejas R; Del Solar G Front Microbiol; 2017; 8():2367. PubMed ID: 29250051 [TBL] [Abstract][Full Text] [Related]
11. Chemical synthesis of a fully active transcriptional repressor protein. del Solar G; Albericio F; Eritja R; Espinosa M Proc Natl Acad Sci U S A; 1994 May; 91(11):5178-82. PubMed ID: 8197204 [TBL] [Abstract][Full Text] [Related]
12. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699 [TBL] [Abstract][Full Text] [Related]
13. Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. Gonzalez de Peredo A; Saint-Pierre C; Latour JM; Michaud-Soret I; Forest E J Mol Biol; 2001 Jun; 310(1):83-91. PubMed ID: 11419938 [TBL] [Abstract][Full Text] [Related]
14. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure. Golovanov AP; Barillà D; Golovanova M; Hayes F; Lian LY Mol Microbiol; 2003 Nov; 50(4):1141-53. PubMed ID: 14622405 [TBL] [Abstract][Full Text] [Related]
15. Functional roles of amino acid residues involved in forming the alpha-helix-turn-alpha-helix operator DNA binding motif of Tet repressor from Tn10. Baumeister R; Müller G; Hecht B; Hillen W Proteins; 1992 Oct; 14(2):168-77. PubMed ID: 1409566 [TBL] [Abstract][Full Text] [Related]
16. Plasmid pIP501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer. Steinmetzer K; Kuhn K; Behlke J; Golbik R; Brantl S Plasmid; 2002 May; 47(3):201-9. PubMed ID: 12151235 [TBL] [Abstract][Full Text] [Related]
17. A genetically economical family of plasmid-encoded transcriptional repressors involved in control of plasmid copy number. del Solar G; Hernández-Arriaga AM; Gomis-Rüth FX; Coll M; Espinosa M J Bacteriol; 2002 Sep; 184(18):4943-51. PubMed ID: 12193609 [No Abstract] [Full Text] [Related]
18. The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. Oberer M; Zangger K; Prytulla S; Keller W Biochem J; 2002 Jan; 361(Pt 1):41-7. PubMed ID: 11743881 [TBL] [Abstract][Full Text] [Related]
19. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
20. Structure of the Escherichia coli response regulator NarL. Baikalov I; Schröder I; Kaczor-Grzeskowiak M; Grzeskowiak K; Gunsalus RP; Dickerson RE Biochemistry; 1996 Aug; 35(34):11053-61. PubMed ID: 8780507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]