These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9714202)

  • 1. Morphology and differentiation of the coelomocytes of the free-living stages of Nippostrongylus brasiliensis.
    Weinstein PP
    J Parasitol; 1998 Aug; 84(4):730-8. PubMed ID: 9714202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of coelomocytes 5 and 6 and their interaction with a seam nurse cell in the free-living stages of Nippostrongylus brasiliensis.
    Weinstein PP
    J Parasitol; 2004 Dec; 90(6):1308-20. PubMed ID: 15715221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological differentiation and function of the coelomocytes in the parasitic stages of Nippostrongylus brasiliensis.
    Weinstein PP
    J Parasitol; 2006 Oct; 92(5):894-917. PubMed ID: 17152928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin B12 changes in Nippostrongylus brasiliensis in its free-living and parasitic habitats with biochemical implications.
    Weinstein PP
    J Parasitol; 1996 Feb; 82(1):1-6. PubMed ID: 8627475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the structure of Nippostrongylus brasiliensis intestinal cells during development from the free-living to the parasitic stages.
    Bonner TP
    J Parasitol; 1979 Oct; 65(5):745-50. PubMed ID: 512766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtopography of Nippostrongylus brasiliensis (Nematoda: Heligmosomatidae): free-living larval stages.
    Nembo B; Goudey-Perriere F; Gayral P; Perriere C; Brousse-Gaury P
    J Morphol; 1993 Sep; 217(3):263-71. PubMed ID: 8230233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtopography of Nippostrongylus brasiliensis (Nematoda: Heligmosomatidae): parasitic larval stages and adults.
    Nembo B; Goudey-Perriere F; Gayral P; Perriere C; Brousse-Gaury P
    J Morphol; 1993 Sep; 217(3):273-85. PubMed ID: 8230234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of development in vitro of third-stage Nippostrongylus brasiliensis.
    Bonner TP
    J Parasitol; 1979 Feb; 65(1):74-8. PubMed ID: 448602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of azasteroids on growth and development of the free-living stages of Nippostrongylus brasiliensis and Nematospiroides dubius.
    Bottjer KP; Weinstein PP; Thompson MJ
    Comp Biochem Physiol B; 1984; 78(4):805-11. PubMed ID: 6467913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of complement in innate, adaptive and eosinophil-dependent immunity to the nematode Nippostrongylus brasiliensis.
    Giacomin PR; Gordon DL; Botto M; Daha MR; Sanderson SD; Taylor SM; Dent LA
    Mol Immunol; 2008 Jan; 45(2):446-55. PubMed ID: 17675237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of L4 larvae of Nippostrongylus brasiliensis for the in vivo screening of anthelmintic drugs.
    Domínguez L; Saldaña J; Chernin J
    Can J Vet Res; 2000 Jul; 64(3):160-3. PubMed ID: 10935881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides bakeri.
    Knott ML; Matthaei KI; Foster PS; Dent LA
    Mol Immunol; 2009 Aug; 46(13):2714-22. PubMed ID: 19535141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from the earthworm, Dendrobaena veneta.
    Homa J; Bzowska M; Klimek M; Plytycz B
    Dev Comp Immunol; 2008; 32(1):9-14. PubMed ID: 17544121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of catecholamide spiroarsoranes and their in vitro anthelmintic properties against Molinema dessetae and Nippostrongylus brasiliensis infective larvae.
    Loiseau PM; Trabelsi M; Madaule Y; Bories C; Wolf JG
    Arzneimittelforschung; 1996 Nov; 46(11):1095-8. PubMed ID: 8955872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the morphology and the distribution of rat intestinal eosinophils during infection with the nematode Nippostrongylus brasiliensis.
    Eversole R; Mackenzie C; Conder G; Johnson S; Beuving L
    Lab Invest; 1999 Jul; 79(7):785-97. PubMed ID: 10418819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Differentiation of closely related species Hyalomma anatolicum and H. excavatum (Acari: Ixodidae) based on a study of all life cycle stages, throughout entire geographical range].
    Apanaskevich DA
    Parazitologiia; 2003; 37(4):259-80. PubMed ID: 14515505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-nematode interaction in vivo: Nippostrongylus brasiliensis infective larvae in the peritoneum of unsensitized rats.
    Wertheim G; Zylberman H; Hamada GS
    Ann Parasitol Hum Comp; 1987; 62(1):47-57. PubMed ID: 3566090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi.
    Taniguchi K; Nishida H
    Dev Growth Differ; 2004 Apr; 46(2):163-80. PubMed ID: 15066195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ultrastructure of coelomic epithelium and coelomocytes of intact and wounded starfish Asterias rubens L].
    Gorshkov AN; Blinova MI; Pinaev GP
    Tsitologiia; 2009; 51(8):650-62. PubMed ID: 19799349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva.
    Horie T; Sakurai D; Ohtsuki H; Terakita A; Shichida Y; Usukura J; Kusakabe T; Tsuda M
    J Comp Neurol; 2008 Jul; 509(1):88-102. PubMed ID: 18421706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.