BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 9714230)

  • 1. The effects of dietary yeast on the cellular immune response of Drosophila melanogaster against the larval parasitoid, Leptopilina boulardi.
    Vass E; Nappi AJ
    J Parasitol; 1998 Aug; 84(4):870-2. PubMed ID: 9714230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged oviposition decreases the ability of the parasitoid Leptopilina boulardi to suppress the cellular immune response of its host Drosophila melanogaster.
    Vass E; Nappi AJ
    Exp Parasitol; 1998 May; 89(1):86-91. PubMed ID: 9603493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated.
    Sorrentino RP; Carton Y; Govind S
    Dev Biol; 2002 Mar; 243(1):65-80. PubMed ID: 11846478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid.
    Carton Y; Frey F; Stanley DW; Vass E; Nappi AJ
    J Parasitol; 2002 Apr; 88(2):405-7. PubMed ID: 12054022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemocyte changes in D. Melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor.
    Labrosse C; Eslin P; Doury G; Drezen JM; Poirié M
    J Insect Physiol; 2005 Feb; 51(2):161-70. PubMed ID: 15749101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leptopilina heterotoma and L. boulardi: strategies to avoid cellular defense responses of Drosophila melanogaster.
    Rizki TM; Rizki RM; Carton Y
    Exp Parasitol; 1990 May; 70(4):466-75. PubMed ID: 2108875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction.
    Labrosse C; Stasiak K; Lesobre J; Grangeia A; Huguet E; Drezen JM; Poirie M
    Insect Biochem Mol Biol; 2005 Feb; 35(2):93-103. PubMed ID: 15681220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasite-induced enhancement of hemolymph tyrosinase activity in a selected immune reactive strain of Drosophila melanogaster.
    Nappi AJ; Carton Y; Frey F
    Arch Insect Biochem Physiol; 1991; 18(3):159-68. PubMed ID: 1932781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response.
    Williams MJ; Ando I; Hultmark D
    Genes Cells; 2005 Aug; 10(8):813-23. PubMed ID: 16098145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of success of Leptopilina boulardi in Drosophila yakuba: the mechanisms explored.
    Dubuffet A; Doury G; Labrousse C; Drezen JM; Carton Y; Poirié M
    Dev Comp Immunol; 2008; 32(6):597-602. PubMed ID: 18061668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue communication in a systemic immune response of Drosophila.
    Yang H; Hultmark D
    Fly (Austin); 2016 Jul; 10(3):115-22. PubMed ID: 27116253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole, and N-acetylarterenone during eumelanin formation in immune reactive larvae of Drosophila melanogaster.
    Nappi AJ; Vass E; Carton Y; Frey F
    Arch Insect Biochem Physiol; 1992; 20(3):181-91. PubMed ID: 1450450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster.
    Vanha-Aho LM; Anderl I; Vesala L; Hultmark D; Valanne S; Rämet M
    PLoS Pathog; 2015 May; 11(5):e1004895. PubMed ID: 25965263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An introduction to parasitic wasps of Drosophila and the antiparasite immune response.
    Small C; Paddibhatla I; Rajwani R; Govind S
    J Vis Exp; 2012 May; (63):e3347. PubMed ID: 22588641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response.
    Nappi AJ; Frey F; Carton Y
    J Insect Physiol; 2005 Feb; 51(2):197-205. PubMed ID: 15749104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster.
    Kraaijeveld AR; Godfray HC
    Nature; 1997 Sep; 389(6648):278-80. PubMed ID: 9305840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites.
    Nappi AJ; Vass E; Frey F; Carton Y
    Eur J Cell Biol; 1995 Dec; 68(4):450-6. PubMed ID: 8690025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster.
    Márkus R; Kurucz E; Rus F; Andó I
    Immunol Lett; 2005 Oct; 101(1):108-11. PubMed ID: 15964636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ligation on the cellular immune reactions of Drosophila algonquin against the hymenopterous parasite Pseudeucoila bochei.
    Nappi AJ
    J Parasitol; 1975 Apr; 61(2):373-6. PubMed ID: 805231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide production in immune-reactive Drosophila melanogaster.
    Nappi AJ; Vass E
    J Parasitol; 1998 Dec; 84(6):1150-7. PubMed ID: 9920305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.