BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9714715)

  • 1. Cholesterol affects African swine fever virus infection.
    Bernardes C; António A; Pedroso de Lima MC; Valdeira ML
    Biochim Biophys Acta; 1998 Jul; 1393(1):19-25. PubMed ID: 9714715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.
    Galindo I; Cuesta-Geijo MA; Hlavova K; Muñoz-Moreno R; Barrado-Gil L; Dominguez J; Alonso C
    Virus Res; 2015 Mar; 200():45-55. PubMed ID: 25662020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection.
    Cuesta-Geijo MÁ; Chiappi M; Galindo I; Barrado-Gil L; Muñoz-Moreno R; Carrascosa JL; Alonso C
    J Virol; 2016 Feb; 90(3):1534-43. PubMed ID: 26608317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the role of endosomal proteins for African swine fever virus infection.
    Cuesta-Geijo MÁ; García-Dorival I; Del Puerto A; Urquiza J; Galindo I; Barrado-Gil L; Lasala F; Cayuela A; Sorzano COS; Gil C; Delgado R; Alonso C
    PLoS Pathog; 2022 Jan; 18(1):e1009784. PubMed ID: 35081156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection.
    Quetglas JI; Hernáez B; Galindo I; Muñoz-Moreno R; Cuesta-Geijo MA; Alonso C
    J Virol; 2012 Feb; 86(3):1758-67. PubMed ID: 22114329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration.
    Matamoros T; Alejo A; Rodríguez JM; Hernáez B; Guerra M; Fraile-Ramos A; Andrés G
    mBio; 2020 Aug; 11(4):. PubMed ID: 32788374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.
    Hakobyan A; Galindo I; Nañez A; Arabyan E; Karalyan Z; Chistov AA; Streshnev PP; Korshun VA; Alonso C; Zakaryan H
    J Gen Virol; 2018 Jan; 99(1):148-156. PubMed ID: 29235978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection.
    Muñoz-Moreno R; Cuesta-Geijo MÁ; Martínez-Romero C; Barrado-Gil L; Galindo I; García-Sastre A; Alonso C
    PLoS One; 2016; 11(4):e0154366. PubMed ID: 27116236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. African swine fever virus uses macropinocytosis to enter host cells.
    Sánchez EG; Quintas A; Pérez-Núñez D; Nogal M; Barroso S; Carrascosa ÁL; Revilla Y
    PLoS Pathog; 2012; 8(6):e1002754. PubMed ID: 22719252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells.
    Galindo I; Viñuela E; Carrascosa AL
    Virus Res; 1997 Jun; 49(2):193-204. PubMed ID: 9213394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.
    Cuesta-Geijo MÁ; Barrado-Gil L; Galindo I; Muñoz-Moreno R; Alonso C
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28587154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.
    Freitas FB; Frouco G; Martins C; Leitão A; Ferreira F
    Antiviral Res; 2016 Oct; 134():34-41. PubMed ID: 27568922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Exchange Factors at Membrane Contact Sites in African Swine Fever Virus Infection.
    Galindo I; Cuesta-Geijo MÁ; Del Puerto A; Soriano E; Alonso C
    Viruses; 2019 Feb; 11(3):. PubMed ID: 30813555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Proteomic Atlas of the African Swine Fever Virus Particle.
    Alejo A; Matamoros T; Guerra M; Andrés G
    J Virol; 2018 Dec; 92(23):. PubMed ID: 30185597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Binding Properties of African Swine Fever Virus pA104R, a Histone-Like Protein Involved in Viral Replication and Transcription.
    Frouco G; Freitas FB; Coelho J; Leitão A; Martins C; Ferreira F
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28381576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.
    Hernáez B; Guerra M; Salas ML; Andrés G
    PLoS Pathog; 2016 Apr; 12(4):e1005595. PubMed ID: 27110717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular African swine fever virus DNA remains unmethylated in infected Vero cells.
    Weber S; Hakobyan A; Zakaryan H; Doerfler W
    Epigenomics; 2018 Mar; 10(3):289-299. PubMed ID: 29327614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. African swine fever virus-induced polypeptides in porcine alveolar macrophages and in Vero cells: two-dimensional gel analysis.
    Rodriguez JM; Salas ML; Santarén JF
    Proteomics; 2001 Nov; 1(11):1447-56. PubMed ID: 11922604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entry of African swine fever virus into Vero cells and uncoating.
    Valdeira ML; Bernardes C; Cruz B; Geraldes A
    Vet Microbiol; 1998 Feb; 60(2-4):131-40. PubMed ID: 9646445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II.
    Stefanovic S; Windsor M; Nagata KI; Inagaki M; Wileman T
    J Virol; 2005 Sep; 79(18):11766-75. PubMed ID: 16140754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.