These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 9714868)

  • 1. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: experiments with antagonists.
    Zhao FY; Wolf E; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):887-901. PubMed ID: 9714868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the roles of glutamatergic and cholinergic synaptic drive in the control of fictive swimming frequency in young Xenopus tadpoles.
    Zhao FY; Roberts A
    J Comp Physiol A; 1998 Dec; 183(6):753-8. PubMed ID: 9861707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear summation of excitatory synaptic inputs to small neurones: a case study in spinal motoneurones of the young Xenopus tadpole.
    Wolf E; Zhao FY; Roberts A
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):871-86. PubMed ID: 9714867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos.
    Dale N; Roberts A
    J Physiol; 1985 Jun; 363():35-59. PubMed ID: 2862278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ia afferent excitation of motoneurones in the in vitro new-born rat spinal cord is selectively antagonized by kynurenate.
    Jahr CE; Yoshioka K
    J Physiol; 1986 Jan; 370():515-30. PubMed ID: 2870179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic and electrical motoneuron-to-motoneuron synapses contribute to on-cycle excitation during swimming in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1005-12. PubMed ID: 7608750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo.
    Perrins R; Roberts A
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):135-44. PubMed ID: 7658368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co-ordination of swimming.
    Tunstall MJ; Roberts A
    J Physiol; 1994 Feb; 474(3):393-405. PubMed ID: 8014901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central circuits controlling locomotion in young frog tadpoles.
    Roberts A; Soffe SR; Wolf ES; Yoshida M; Zhao FY
    Ann N Y Acad Sci; 1998 Nov; 860():19-34. PubMed ID: 9928299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of nicotinic receptors underlying Renshaw cell excitation by alpha-motor neurons in neonatal rat spinal cord.
    Dourado M; Sargent PB
    J Neurophysiol; 2002 Jun; 87(6):3117-25. PubMed ID: 12037212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAB receptors modulate glycinergic inhibition and spike threshold in Xenopus embryo spinal neurones.
    Wall MJ; Dale N
    J Physiol; 1993 Sep; 469():275-90. PubMed ID: 8271201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the control of myotomal motoneurones during "fictive swimming" in the lamprey spinal cord in vitro.
    Russell DF; Wallén P
    Acta Physiol Scand; 1983 Feb; 117(2):161-70. PubMed ID: 6869028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming.
    Dale N; Roberts A
    J Physiol; 1984 Mar; 348():527-43. PubMed ID: 6325674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of miniature glutamatergic EPSCs in neurons of the locomotor regions of the developing zebrafish.
    Ali DW; Buss RR; Drapeau P
    J Neurophysiol; 2000 Jan; 83(1):181-91. PubMed ID: 10634865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of the excitatory drive during swimming in two amphibian embryos: Rana and Bufo.
    Perrins R; Soffe SR
    J Comp Physiol A; 1996 Oct; 179(4):563-73. PubMed ID: 8828181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vivo pharmacological study of single group Ia fibre contacts with motoneurones in the cat spinal cord.
    Walmsley B; Bolton PS
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):731-41. PubMed ID: 7707239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish.
    Buss RR; Drapeau P
    J Neurophysiol; 2001 Jul; 86(1):197-210. PubMed ID: 11431502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.