BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9715670)

  • 1. Ratings of perceived exertion (RPE) as an index of aerobic endurance during local and general exercises.
    Garcin M; Vautier JF; Vandewalle H; Monod H
    Ergonomics; 1998 Aug; 41(8):1105-14. PubMed ID: 9715670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratings of perceived exertion (RPE) during cycling exercises at constant power output.
    Garcin M; Vautier JF; Vandewalle H; Wolff M; Monod H
    Ergonomics; 1998 Oct; 41(10):1500-9. PubMed ID: 9802254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of rating scales of perceived exertion and heart rate during progressive and maximal constant load exercises till exhaustion in physical education students.
    Garcin M; Wolff M; Bejma T
    Int J Sports Med; 2003 May; 24(4):285-90. PubMed ID: 12784171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of aerobic fitness level on measured and estimated perceived exertion during exhausting runs.
    Garcin M; Mille-Hamard L; Billat V
    Int J Sports Med; 2004 May; 25(4):270-7. PubMed ID: 15162246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiopulmonary, blood metabolite and rating of perceived exertion responses to constant exercises performed at different intensities until exhaustion.
    Pires FO; Noakes TD; Lima-Silva AE; Bertuzzi R; Ugrinowitsch C; Lira FS; Kiss MA
    Br J Sports Med; 2011 Nov; 45(14):1119-25. PubMed ID: 21464149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local critical power is an index of local endurance.
    Le Chevalier JM; Vandewalle H; Thépaut-Mathieu C; Stein JF; Caplan L
    Eur J Appl Physiol; 2000 Jan; 81(1-2):120-7. PubMed ID: 10552276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between rating of perceived exertion and muscle activity during exhaustive constant-load cycling.
    Fontes EB; Smirmaul BP; Nakamura FY; Pereira G; Okano AH; Altimari LR; Dantas JL; de Moraes AC
    Int J Sports Med; 2010 Oct; 31(10):683-8. PubMed ID: 20617482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-related differences in ratings of perceived exertion and estimated time limit.
    Garcin M; Fleury A; Mille-Hamard L; Billat V
    Int J Sports Med; 2005 Oct; 26(8):675-81. PubMed ID: 16158374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceived exertion scales attest to both intensity and exercise duration.
    Garcin M; Billat V
    Percept Mot Skills; 2001 Dec; 93(3):661-71. PubMed ID: 11806583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between perceived exertion and physiologic markers during arm exercise with able-bodied participants and participants with poliomyelitis.
    Al-Rahamneh HQ; Faulkner JA; Byrne C; Eston RG
    Arch Phys Med Rehabil; 2010 Feb; 91(2):273-7. PubMed ID: 20159133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of awareness of change in load on ventilatory response during moderate exercise.
    Yunoki T; Matsuura R; Arimitsu T; Yamanaka R; Kosugi S; Lian CS; Yano T
    Respir Physiol Neurobiol; 2009 Oct; 169(1):69-73. PubMed ID: 19703593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of instructions on perceptually-based ratings.
    Coquart JB; Raul P; Garcin M
    Int J Sports Med; 2008 Feb; 29(2):151-7. PubMed ID: 17990208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses during exhaustive exercise at critical power determined from the 3-min all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Sports Sci; 2013; 31(5):537-45. PubMed ID: 23121405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling.
    Pires FO; Hammond J
    Br J Sports Med; 2012 Jan; 46(1):18-22. PubMed ID: 21266335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry.
    Malek MH; Coburn JW; Weir JP; Beck TW; Housh TJ
    J Neurosci Methods; 2006 Jul; 155(1):126-33. PubMed ID: 16510193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of time to exhaustion at VO2 max in élite cyclists, kayak paddlers, swimmers and runners.
    Billat V; Faina M; Sardella F; Marini C; Fanton F; Lupo S; Faccini P; de Angelis M; Koralsztein JP; Dalmonte A
    Ergonomics; 1996 Feb; 39(2):267-77. PubMed ID: 8851531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia.
    Taylor AD; Bronks R; Bryant AL
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):387-98. PubMed ID: 9402427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of endurance exercise capacity in the heat in prepubertal boys.
    Rowland T; Garrison A; Pober D
    Int J Sports Med; 2007 Jan; 28(1):26-32. PubMed ID: 17213963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue rates of vastus medialis oblique and vastus lateralis during static and dynamic knee extension.
    Grabiner MD; Koh TJ; Miller GF
    J Orthop Res; 1991 May; 9(3):391-7. PubMed ID: 2010843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.