BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9715749)

  • 1. Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways.
    Savageau MA
    Biosystems; 1998; 47(1-2):9-36. PubMed ID: 9715749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Michaelis-Menten mechanism reconsidered: implications of fractal kinetics.
    Savageau MA
    J Theor Biol; 1995 Sep; 176(1):115-24. PubMed ID: 7475096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of fractal kinetics on molecular recognition.
    Savageau MA
    J Mol Recognit; 1993 Dec; 6(4):149-57. PubMed ID: 7917410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple rate-determining steps for nonideal and fractal kinetics.
    Vlad MO; Popa VT; Segal E; Ross J
    J Phys Chem B; 2005 Feb; 109(6):2455-60. PubMed ID: 16851241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.
    Berry H
    Biophys J; 2002 Oct; 83(4):1891-901. PubMed ID: 12324410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifractality in intracellular enzymatic reactions.
    Aranda JS; Salgado E; Muñoz-Diosdado A
    J Theor Biol; 2006 May; 240(2):209-17. PubMed ID: 16256143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal michaelis-menten kinetics under steady state conditions: Application to mibefradil.
    Marsh RE; Tuszyński JA
    Pharm Res; 2006 Dec; 23(12):2760-7. PubMed ID: 17063399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The total quasi-steady-state approximation is valid for reversible enzyme kinetics.
    Tzafriri AR; Edelman ER
    J Theor Biol; 2004 Feb; 226(3):303-13. PubMed ID: 14643644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling the impact of obstacles in diffusion and kinetics of an enzyme catalysed reaction.
    Mourão M; Kreitman D; Schnell S
    Phys Chem Chem Phys; 2014 Mar; 16(10):4492-503. PubMed ID: 24141265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks.
    Aon MA; O'Rourke B; Cortassa S
    Mol Cell Biochem; 2004; 256-257(1-2):169-84. PubMed ID: 14977179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal-like kinetics of intracellular enzymatic reactions: a chemical framework of endotoxin tolerance and a possible non-specific contribution of macromolecular crowding to cross-tolerance.
    Vasilescu C; Olteanu M; Flondor P; Calin GA
    Theor Biol Med Model; 2013 Sep; 10():55. PubMed ID: 24034421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects.
    Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R
    FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [New relations for steady-state enzyme kinetics and their application to rapid equilibrium assumption].
    Vrzheshch PV
    Biofizika; 2013; 58(6):953-60. PubMed ID: 25486753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2004 Jan; 48(1):82-104. PubMed ID: 14685773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis-Menten Equation.
    Piephoff DE; Wu J; Cao J
    J Phys Chem Lett; 2017 Aug; 8(15):3619-3623. PubMed ID: 28737397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways.
    Brooks SP; Storey KB
    Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
    Qian H
    J Phys Chem B; 2006 Aug; 110(31):15063-74. PubMed ID: 16884217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Enzymatic Reactions Using ITC.
    Zambelli B
    Methods Mol Biol; 2019; 1964():251-266. PubMed ID: 30929248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensionally frustrated diffusion towards fractal adsorbers.
    Nair PR; Alam MA
    Phys Rev Lett; 2007 Dec; 99(25):256101. PubMed ID: 18233533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.