These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9715750)

  • 1. Enzymatic reaction rate limits with constraints on equilibrium constants and experimental parameters.
    Bish DR; Mavrovouniotis ML
    Biosystems; 1998; 47(1-2):37-60. PubMed ID: 9715750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary optimization of enzyme kinetic parameters; effect of constraints.
    Klipp E; Heinrich R
    J Theor Biol; 1994 Dec; 171(3):309-23. PubMed ID: 7869733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis of rate limitation within enzymes: relations between flux control coefficients of rate constants and unidirectional rates, rate constants and thermodynamic parameters of single isolated enzymes.
    Brown GC; Cooper CE
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):159-64. PubMed ID: 8198529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy changes during the formation and interconversion of enzyme-substrate complexes.
    Gutfreund H; Trentham DR
    Ciba Found Symp; 1975; (31):69-86. PubMed ID: 125190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary optimization of the catalytic efficiency of enzymes.
    Pettersson G
    Eur J Biochem; 1992 May; 206(1):289-95. PubMed ID: 1587280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quasi-equilibrium assumption for Bi-Bi ordered bisubstrate enzymatic reaction. How to discriminate the mechanism correctly.
    Vrzheshch PV
    Biochemistry (Mosc); 2010 Nov; 75(11):1374-82. PubMed ID: 21314605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relations between biochemical thermodynamics and biochemical kinetics.
    Alberty RA
    Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid-equilibrium rate equations for the enzymatic catalysis of A+B=P+Q over a range of pH.
    Alberty RA
    Biophys Chem; 2008 Feb; 132(2-3):114-26. PubMed ID: 18061334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine.
    Freist W; Sternbach H
    Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of kinetic parameters when modifiers are bound in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2010 Feb; 114(4):1684-9. PubMed ID: 20055362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and thermodynamic investigation of enzymatic L-ascorbyl acetate synthesis.
    Zhang DH; Li C; Zhi GY
    J Biotechnol; 2013 Dec; 168(4):416-20. PubMed ID: 24211407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.
    Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M
    Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermodynamic driving force for kinetics in general and enzyme kinetics in particular.
    Pekař M
    Chemphyschem; 2015 Mar; 16(4):884-5. PubMed ID: 25598535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of rapid-equilibrium kinetic parameters of ordered and random enzyme-catalyzed reaction A+B=P+Q.
    Alberty RA
    J Phys Chem B; 2009 Jul; 113(29):10043-8. PubMed ID: 19558174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding.
    Kwiatkowski AP; Huang CY; King MM
    Biochemistry; 1990 Jan; 29(1):153-9. PubMed ID: 2157478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Michaelis-Menten kinetics under non-isothermal conditions.
    Lervik A; Kjelstrup S; Qian H
    Phys Chem Chem Phys; 2015 Jan; 17(2):1317-24. PubMed ID: 25425022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids.
    Freist W; Cramer F
    Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.
    Liebermeister W; Uhlendorf J; Klipp E
    Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.