These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 9715794)

  • 1. Gender-specific protection from microvessel rarefaction in female hypertensive rats.
    Papanek PE; Rieder MJ; Lombard JH; Greene AS
    Am J Hypertens; 1998 Aug; 11(8 Pt 1):998-1005. PubMed ID: 9715794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats.
    Hansen-Smith FM; Morris LW; Greene AS; Lombard JH
    Circ Res; 1996 Aug; 79(2):324-30. PubMed ID: 8756011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvessel changes in hypertension measured by Griffonia simplicifolia I lectin.
    Greene AS; Lombard JH; Cowley AW; Hansen-Smith FM
    Hypertension; 1990 Jun; 15(6 Pt 2):779-83. PubMed ID: 2351431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of microvascular rarefaction and reduced renal mass hypertension.
    Rieder MJ; Roman RJ; Greene AS
    Hypertension; 1997 Jul; 30(1 Pt 1):120-7. PubMed ID: 9231831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle.
    Frisbee JC; Lombard JH
    Microvasc Res; 1999 May; 57(3):273-83. PubMed ID: 10329253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreases in steady-state muscle performance and vessel density in reduced renal mass hypertensive rats.
    O'Drobinak DM; Greene AS
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H661-7. PubMed ID: 8779843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation.
    Frisbee JC; Lombard JH
    Microvasc Res; 1998 Nov; 56(3):218-27. PubMed ID: 9828160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamic and microcirculatory changes during development of renal hypertension.
    Hernandez I; Greene AS
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H33-8. PubMed ID: 7840279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced renal mass hypertension, but not high salt diet, alters skeletal muscle arteriolar distensibility and myogenic responses.
    Frisbee JC; Lombard JH
    Microvasc Res; 2000 Mar; 59(2):255-64. PubMed ID: 10684731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular flow and tissue PO(2) in skeletal muscle of chronic reduced renal mass hypertensive rats.
    Lombard JH; Frisbee JC; Greene AS; Hudetz AG; Roman RJ; Tonellato PJ
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2295-302. PubMed ID: 11045965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypertension-independent microvascular rarefaction in the obese Zucker rat model of the metabolic syndrome.
    Frisbee JC
    Microcirculation; 2005; 12(5):383-92. PubMed ID: 16020387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of vascular changes by renin-angiotensin-aldosterone system in salt-sensitive hypertension.
    Zeng ZH; Luo BH; Gao YJ; Su CJ; He CC; Yi JJ; Li N; Lee RM
    Eur J Pharmacol; 2004 Oct; 503(1-3):129-33. PubMed ID: 15496307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of salt loading on baroreflex sensitivity in reduced renal mass hypertension.
    Özaykan B; Taskin E; Magemizoğlu A
    Clin Exp Hypertens; 2017; 39(7):592-600. PubMed ID: 28635325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of extrinsic factors and intrinsic vascular alterations to reduced arteriolar reactivity with high-salt diet and hypertension.
    Frisbee JC; Sylvester FA; Lombard JH
    Microcirculation; 2000 Aug; 7(4):281-9. PubMed ID: 10963633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats.
    Hernandez I; Cowley AW; Lombard JH; Greene AS
    Am J Physiol; 1992 Sep; 263(3 Pt 2):H664-7. PubMed ID: 1415589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats.
    Carlström M; Sällström J; Skøtt O; Larsson E; Persson AE
    Hypertension; 2007 Jun; 49(6):1342-50. PubMed ID: 17438306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension.
    Frisbee JC; Lombard JH
    Microcirculation; 1999 Sep; 6(3):215-25. PubMed ID: 10501095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life and death in the microcirculation: a role for angiotensin II.
    Greene AS
    Microcirculation; 1998; 5(2-3):101-7. PubMed ID: 9789251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity.
    Melo LG; Veress AT; Chong CK; Pang SC; Flynn TG; Sonnenberg H
    Am J Physiol; 1998 Jan; 274(1):R255-61. PubMed ID: 9458926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-sensitive hypertension after exposure to angiotensin is associated with inability to upregulate renal epoxygenases.
    Zhao X; Pollock DM; Zeldin DC; Imig JD
    Hypertension; 2003 Oct; 42(4):775-80. PubMed ID: 12900436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.