These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 9715865)
1. Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Sun H; Gaspo R; Leblanc N; Nattel S Circulation; 1998 Aug; 98(7):719-27. PubMed ID: 9715865 [TBL] [Abstract][Full Text] [Related]
2. Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Wakili R; Yeh YH; Yan Qi X; Greiser M; Chartier D; Nishida K; Maguy A; Villeneuve LR; Boknik P; Voigt N; Krysiak J; Kääb S; Ravens U; Linke WA; Stienen GJ; Shi Y; Tardif JC; Schotten U; Dobrev D; Nattel S Circ Arrhythm Electrophysiol; 2010 Oct; 3(5):530-41. PubMed ID: 20660541 [TBL] [Abstract][Full Text] [Related]
3. Role of constitutively active acetylcholine-mediated potassium current in atrial contractile dysfunction caused by atrial tachycardia remodelling. Koo SH; Wakili R; Heo JH; Chartier D; Kim HS; Kim SJ; Lee JW; Qi XY; Nattel S; Cha TJ Europace; 2010 Oct; 12(10):1490-7. PubMed ID: 20682556 [TBL] [Abstract][Full Text] [Related]
4. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Yue L; Feng J; Gaspo R; Li GR; Wang Z; Nattel S Circ Res; 1997 Oct; 81(4):512-25. PubMed ID: 9314832 [TBL] [Abstract][Full Text] [Related]
5. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Sun H; Chartier D; Leblanc N; Nattel S Cardiovasc Res; 2001 Mar; 49(4):751-61. PubMed ID: 11230974 [TBL] [Abstract][Full Text] [Related]
6. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Gaspo R; Bosch RF; Bou-Abboud E; Nattel S Circ Res; 1997 Dec; 81(6):1045-52. PubMed ID: 9400386 [TBL] [Abstract][Full Text] [Related]
7. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Zhang D; Wu CT; Qi X; Meijering RA; Hoogstra-Berends F; Tadevosyan A; Cubukcuoglu Deniz G; Durdu S; Akar AR; Sibon OC; Nattel S; Henning RH; Brundel BJ Circulation; 2014 Jan; 129(3):346-58. PubMed ID: 24146251 [TBL] [Abstract][Full Text] [Related]
8. Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. Greiser M; Neuberger HR; Harks E; El-Armouche A; Boknik P; de Haan S; Verheyen F; Verheule S; Schmitz W; Ravens U; Nattel S; Allessie MA; Dobrev D; Schotten U J Mol Cell Cardiol; 2009 Mar; 46(3):385-94. PubMed ID: 19100271 [TBL] [Abstract][Full Text] [Related]
10. Dihydropyridine and beta adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Gaspo R; Sun H; Fareh S; Levi M; Yue L; Allen BG; Hebert TE; Nattel S Cardiovasc Res; 1999 May; 42(2):434-42. PubMed ID: 10533579 [TBL] [Abstract][Full Text] [Related]
11. Remodeling of Ca(2+)-handling by atrial tachycardia: evidence for a role in loss of rate-adaptation. Kneller J; Sun H; Leblanc N; Nattel S Cardiovasc Res; 2002 May; 54(2):416-26. PubMed ID: 12062346 [TBL] [Abstract][Full Text] [Related]
12. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Gaspo R; Bosch RF; Talajic M; Nattel S Circulation; 1997 Dec; 96(11):4027-35. PubMed ID: 9403628 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Yue L; Melnyk P; Gaspo R; Wang Z; Nattel S Circ Res; 1999 Apr; 84(7):776-84. PubMed ID: 10205145 [TBL] [Abstract][Full Text] [Related]
14. Role of SR Ca2+-ATPase in contractile dysfunction of myocytes in tachycardia-induced heart failure. Igarashi-Saito K; Tsutsui H; Yamamoto S; Takahashi M; Kinugawa S; Tagawa H; Usui M; Yamamoto M; Egashira K; Takeshita A Am J Physiol; 1998 Jul; 275(1):H31-40. PubMed ID: 9688893 [TBL] [Abstract][Full Text] [Related]
15. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Lenaerts I; Bito V; Heinzel FR; Driesen RB; Holemans P; D'hooge J; Heidbüchel H; Sipido KR; Willems R Circ Res; 2009 Oct; 105(9):876-85. PubMed ID: 19762679 [TBL] [Abstract][Full Text] [Related]
16. Kb-R7943 prevents acute, atrial fibrillation-induced shortening of atrial refractoriness in anesthetized dogs. Miyata A; Zipes DP; Hall S; Rubart M Circulation; 2002 Sep; 106(11):1410-9. PubMed ID: 12221061 [TBL] [Abstract][Full Text] [Related]
17. Regional differences in the recovery course of tachycardia-induced changes of atrial electrophysiological properties. Lee SH; Lin FY; Yu WC; Cheng JJ; Kuan P; Hung CR; Chang MS; Chen SA Circulation; 1999 Mar; 99(9):1255-64. PubMed ID: 10069796 [TBL] [Abstract][Full Text] [Related]
18. Blockade of atrial-specific K+-currents increases atrial but not ventricular contractility by enhancing reverse mode Na+/Ca2+-exchange. Schotten U; de Haan S; Verheule S; Harks EG; Frechen D; Bodewig E; Greiser M; Ram R; Maessen J; Kelm M; Allessie M; Van Wagoner DR Cardiovasc Res; 2007 Jan; 73(1):37-47. PubMed ID: 17157284 [TBL] [Abstract][Full Text] [Related]
19. Induction of heat shock response protects the heart against atrial fibrillation. Brundel BJ; Shiroshita-Takeshita A; Qi X; Yeh YH; Chartier D; van Gelder IC; Henning RH; Kampinga HH; Nattel S Circ Res; 2006 Dec; 99(12):1394-402. PubMed ID: 17110598 [TBL] [Abstract][Full Text] [Related]
20. Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. Schotten U; Duytschaever M; Ausma J; Eijsbouts S; Neuberger HR; Allessie M Circulation; 2003 Mar; 107(10):1433-9. PubMed ID: 12642366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]