These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 9716700)
1. The late component of L-type calcium current during guinea-pig cardiac action potentials and its contribution to contraction. Linz KW; Meyer R Pflugers Arch; 1998 Oct; 436(5):679-88. PubMed ID: 9716700 [TBL] [Abstract][Full Text] [Related]
2. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. Linz KW; Meyer R J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):425-42. PubMed ID: 9806993 [TBL] [Abstract][Full Text] [Related]
3. Calcium-dependent modulation of the plateau phase of action potential in isolated ventricular cells of rabbit heart. Papp Z; Peineau N; Szigeti G; Argibay J; Kovács L Acta Physiol Scand; 1999 Oct; 167(2):119-29. PubMed ID: 10571547 [TBL] [Abstract][Full Text] [Related]
4. The effect of internal sodium and caesium on phasic contraction of patch-clamped rabbit ventricular myocytes. Levi AJ; Mitcheson JS; Hancox JC J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):1-19. PubMed ID: 8730578 [TBL] [Abstract][Full Text] [Related]
5. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents. Ferrier GR; Howlett SE J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):107-22. PubMed ID: 7602513 [TBL] [Abstract][Full Text] [Related]
6. Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. Sipido KR; Carmeliet E; Pappano A J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):1-17. PubMed ID: 8583394 [TBL] [Abstract][Full Text] [Related]
7. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. Janczewski AM; Lakatta EG J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810 [TBL] [Abstract][Full Text] [Related]
8. Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+ content during the cardiac cycle in guinea pig and rat ventricular myocytes. Terracciano CM; MacLeod KT Biophys J; 1997 Mar; 72(3):1319-26. PubMed ID: 9138577 [TBL] [Abstract][Full Text] [Related]
9. Effects of extracellular ATP on ICa, [Ca2+]i, and contraction in isolated ferret ventricular myocytes. Qu Y; Himmel HM; Campbell DL; Strauss HC Am J Physiol; 1993 Mar; 264(3 Pt 1):C702-8. PubMed ID: 8384788 [TBL] [Abstract][Full Text] [Related]
10. The role of Na(+)-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes. Wasserstrom JA; Vites AM J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):529-42. PubMed ID: 8782114 [TBL] [Abstract][Full Text] [Related]
11. Voltage dependent activation of tonic contraction in cardiac myocytes. Mackiewicz U; Emanuel K; Lewartowski B J Physiol Pharmacol; 2003 Sep; 54(3):409-21. PubMed ID: 14566079 [TBL] [Abstract][Full Text] [Related]
12. [The role of L-type Ca2+ current and reverse mode Na+ -Ca2+ exchange in activation of excitation-contraction coupling in guinea-pig ventricular myocytes]. Jiang B; Zhou XP; Pappano AJ Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2003 May; 19(2):122-6. PubMed ID: 21207655 [TBL] [Abstract][Full Text] [Related]
13. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. Hussain M; Orchard CH J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):385-402. PubMed ID: 9423181 [TBL] [Abstract][Full Text] [Related]
14. Use-dependent reduction and facilitation of Ca2+ current in guinea-pig myocytes. Fedida D; Noble D; Spindler AJ J Physiol; 1988 Nov; 405():439-60. PubMed ID: 2855642 [TBL] [Abstract][Full Text] [Related]