BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9717067)

  • 1. Intracellular Mg2+ regulation in voltage-clamped Helix aspersa neurones measured with mag-fura-2 and Mg(2+)-sensitive microelectrodes.
    Kennedy HJ
    Exp Physiol; 1998 Jul; 83(4):449-60. PubMed ID: 9717067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular calcium and its sodium-independent regulation in voltage-clamped snail neurones.
    Kennedy HJ; Thomas RC
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):533-48. PubMed ID: 7623274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulation of intracellular Mg2+ in guinea-pig heart, studied with Mg(2+)-selective microelectrodes and fluorochromes.
    Buri A; Chen S; Fry CH; Illner H; Kickenweiz E; McGuigan JA; Noble D; Powell T; Twist VW
    Exp Physiol; 1993 Mar; 78(2):221-33. PubMed ID: 8471242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones.
    Schwiening CJ; Thomas RC
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):621-33. PubMed ID: 8815198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurones.
    Willoughby D; Thomas R; Schwiening C
    J Physiol; 2001 Feb; 530(Pt 3):405-16. PubMed ID: 11158272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Rink TJ; Tsien RY
    J Physiol; 1981 Jun; 315():531-48. PubMed ID: 6273543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular free magnesium in neurones of Helix aspersa measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Gamiño SM; Rink TJ
    J Physiol; 1984 Sep; 354():303-17. PubMed ID: 6481636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of injecting calcium-buffer solution on [Ca2+]i in voltage-clamped snail neurons.
    Kennedy HJ; Thomas RC
    Biophys J; 1996 May; 70(5):2120-30. PubMed ID: 9172736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of cytosolic Mg2+ activity and buffering in BC3H-1 cells with mag-fura-2.
    Grubbs RD; Walter A
    Mol Cell Biochem; 1994 Jul; 136(1):11-22. PubMed ID: 7854327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.
    Tashiro M; Tursun P; Konishi M
    Biophys J; 2005 Nov; 89(5):3235-47. PubMed ID: 16085772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.
    Günzel D; Schlue WR
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):595-608. PubMed ID: 8815196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarization triggers intracellular magnesium surge in cultured dorsal root ganglion neurons.
    Kato H; Gotoh H; Kajikawa M; Suto K
    Brain Res; 1998 Jan; 779(1-2):329-33. PubMed ID: 9473713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of membrane potential on Na+ -dependent Mg2+ extrusion from rat ventricular myocytes.
    Tashiro M; Tursun P; Miyazaki T; Watanabe M; Konishi M
    Jpn J Physiol; 2002 Dec; 52(6):541-51. PubMed ID: 12617760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of magnesium in regulating CCK-8-evoked secretory responses in the exocrine rat pancreas.
    Wisdom DM; Salido GM; Baldwin LM; Singh J
    Mol Cell Biochem; 1996 Jan; 154(2):123-32. PubMed ID: 8717426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; Gamiño SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-dependent regulation of the free Mg2+ concentration in neuropile glial cells and P neurones of the leech Hirudo medicinalis.
    Hintz K; Günzel D; Schlue WR
    Pflugers Arch; 1999 Feb; 437(3):354-62. PubMed ID: 9914391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of magnesium by two isoforms of the Na+-Ca2+ exchanger expressed in CCL39 fibroblasts.
    Tashiro M; Konishi M; Iwamoto T; Shigekawa M; Kurihara S
    Pflugers Arch; 2000 Oct; 440(6):819-27. PubMed ID: 11041546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones.
    Crest M; Gola M
    J Physiol; 1993 Jun; 465():265-87. PubMed ID: 8229836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.