BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9717511)

  • 1. Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants.
    Galembeck E; Alonso A; Meirelles NC
    Chem Biol Interact; 1998 May; 113(2):91-103. PubMed ID: 9717511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Participation of band 3 protein in hypotonic hemolysis of human erythrocytes.
    Sato Y; Yamakose H; Suzuki Y
    Biol Pharm Bull; 1993 Feb; 16(2):188-94. PubMed ID: 8395931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of hemolysis by surfactants: effect of solution composition.
    Shalel S; Streichman S; Marmur A
    J Colloid Interface Sci; 2002 Aug; 252(1):66-76. PubMed ID: 16290763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemolysis and antihemolysis induced by amino acid-based surfactants.
    Sánchez L; Martínez V; Infante MR; Mitjans M; Vinardell MP
    Toxicol Lett; 2007 Mar; 169(2):177-84. PubMed ID: 17293064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series.
    Preté PS; Gomes K; Malheiros SV; Meirelles NC; de Paula E
    Biophys Chem; 2002 May; 97(1):45-54. PubMed ID: 12052494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sendai virus-induced hemolysis: reduction in heterogeneity of erythrocyte lipid bilayer fluidity.
    Lyles DS; Landsberger FR
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1918-22. PubMed ID: 194242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemolysis of erythrocytes and erythrocyte membrane fluidity changes by new lysosomotropic compounds.
    Kleszczyńska H; Bonarska D; Luczyński J; Witek S; Sarapuk J
    J Fluoresc; 2005 Mar; 15(2):137-41. PubMed ID: 15883768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants.
    Vives MA; Infante MR; Garcia E; Selve C; Maugras M; Vinardell MP
    Chem Biol Interact; 1999 Mar; 118(1):1-18. PubMed ID: 10227575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of miltefosine with erythrocyte membrane proteins compared to those of ionic surfactants.
    Alonso L; Cardoso ÉJS; Mendanha SA; Alonso A
    Colloids Surf B Biointerfaces; 2019 Aug; 180():23-30. PubMed ID: 31022554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemolysis by surfactants--A review.
    Manaargadoo-Catin M; Ali-Cherif A; Pougnas JL; Perrin C
    Adv Colloid Interface Sci; 2016 Feb; 228():1-16. PubMed ID: 26687805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: mechanism of the protective effect.
    Jumaa M; Müller BW
    Eur J Pharm Sci; 2000 Jan; 9(3):285-90. PubMed ID: 10594386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple stages of detergent-erythrocyte membrane interaction--a spin label study.
    Preté PS; Domingues CC; Meirelles NC; Malheiros SV; Goñi FM; de Paula E; Schreier S
    Biochim Biophys Acta; 2011 Jan; 1808(1):164-70. PubMed ID: 21040698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume expansion of erythrocytes is not the only mechanism responsible for the protection by arginine-based surfactants against hypotonic hemolysis.
    Fait ME; Hermet M; Vazquez R; Mate S; Daza Millone MA; Vela ME; Morcelle SR; Bakas L
    Colloids Surf B Biointerfaces; 2018 Nov; 171():134-141. PubMed ID: 30025375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of hypotonic hemolysis of human erythrocytes.
    Sato Y; Yamakose H; Suzuki Y
    Biol Pharm Bull; 1993 May; 16(5):506-12. PubMed ID: 7689891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study.
    Sutipornpalangkul W; Morales NP; Unchern S; Sanvarinda Y; Chantharaksri U; Fucharoen S
    J Med Assoc Thai; 2012 Jan; 95(1):29-36. PubMed ID: 22379738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of surfactant erythrocyte toxicity by egg phosphatidylcholine.
    Gould LA; Lansley AB; Brown MB; Forbes B; Martin GP
    J Pharm Pharmacol; 2000 Oct; 52(10):1203-9. PubMed ID: 11092564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of novel, nonhemolytic surfactants with phospholipid vesicles.
    Thorén PE; Söderman O; Engström S; von Corswant C
    Langmuir; 2007 Jun; 23(13):6956-65. PubMed ID: 17516668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of surface-active substances on biological membranes. II. Hemolytic activity of nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Krivich VS; Baholdina LP; Rogozhin SV
    Biochim Biophys Acta; 1978 Feb; 507(1):1-7. PubMed ID: 623743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of double-chained cationic surfactants, dimethyldialkylammoniums, with erythrocyte membranes: stabilization of the cationic vesicles by phosphatidylcholines with unsaturated fatty acyl chains.
    Kitagawa S; Hiyama F; Kato M; Watanabe R
    J Pharm Pharmacol; 2002 Jun; 54(6):773-80. PubMed ID: 12078993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure.
    Cruz Silva MM; Madeira VM; Almeida LM; Custódio JB
    Biochim Biophys Acta; 2000 Mar; 1464(1):49-61. PubMed ID: 10704919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.