BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9717511)

  • 21. Hemolysis of erythrocytes and fluorescence polarization changes elicited by peptide toxins, aliphatic alcohols, related glycols and benzylidene derivatives.
    Osorio e Castro VR; Ashwood ER; Wood SG; Vernon LP
    Biochim Biophys Acta; 1990 Nov; 1029(2):252-8. PubMed ID: 2245210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Action of surface-active substances of biological membranes. III. Comparison of hemolytic activity of ionic and nonionic surfactants.
    Zaslavsky BY; Ossipov NN; Rogozhin SV
    Biochim Biophys Acta; 1978 Jun; 510(1):151-9. PubMed ID: 667031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes.
    Vinardell MP; Infante MR
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Oct; 124(2):117-20. PubMed ID: 10622426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ascorbic acid based amphiphiles on human erythrocytes membrane.
    Rasia M; Spengler MI; Palma S; Manzo R; Lo Nostro P; Allemandi D
    Clin Hemorheol Microcirc; 2007; 36(2):133-40. PubMed ID: 17325437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane fluidity change in erythrocytes induced by complement system.
    Nakamura M; Ohnishi S; Kitamura H; Inai S
    Biochemistry; 1976 Nov; 15(22):4838-43. PubMed ID: 186096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective effects of some neutral amino acids against hypotonic hemolysis.
    Morimoto Y; Tanaka K; Iwakiri Y; Tokuhiro S; Fukushima S; Takeuchi Y
    Biol Pharm Bull; 1995 Oct; 18(10):1417-22. PubMed ID: 8593448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis.
    Tanaka KI; Ohnishi S
    Biochim Biophys Acta; 1976 Mar; 426(2):218-31. PubMed ID: 1252507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chain length-dependent interaction of free fatty acids with the erythrocyte membrane.
    Rybczynska M; Csordas A
    Life Sci; 1989; 44(9):625-32. PubMed ID: 2927261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The rate of osmotic hemolysis: a relationship with membrane bilayer fluidity.
    Araki K; Rifkind JM
    Biochim Biophys Acta; 1981 Jul; 645(1):81-90. PubMed ID: 6266477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of N,N'-bisdimethyl-1,2-ethanediamine dichloride, a double-chain surfactant, on membrane-related functions in human erythrocytes.
    Fogt A; Hägerstrand H; Isomaa B
    Chem Biol Interact; 1995 Feb; 94(2):147-55. PubMed ID: 7828221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.
    Rodi PM; Bocco Gianello MD; Corregido MC; Gennaro AM
    Biochim Biophys Acta; 2014 Mar; 1838(3):859-66. PubMed ID: 24239862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemolytic action of anionic surfactants of the diacyl lysine type.
    Vives MA; Macián M; Seguer J; Infante MR; Vinardell MP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 Sep; 118(1):71-4. PubMed ID: 9366037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.
    Macián M; Seguer J; Infante MR; Selve C; Vinardell MP
    Toxicology; 1996 Jan; 106(1-3):1-9. PubMed ID: 8571379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron paramagnetic resonance and saturation transfer electron paramagnetic resonance studies on erythrocytes from goats with and without heritable myotonia.
    Swift LL; Atkinson JB; Perkins RC; Dalton LR; LeQuire VS
    J Membr Biol; 1980; 52(2):165-72. PubMed ID: 6245217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of membrane stabilizing activity from honey. An in-vitro approach.
    Manukumar HM; Umesha S
    Acta Sci Pol Technol Aliment; 2015; 14(1):85-90. PubMed ID: 28068024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protective effect of coenzyme Q10 on erythrolysis induced by octoxinol or hypotonic salines.
    Sugiyama S; Miyazaki Y; Nagai S; Ozawa T
    Arzneimittelforschung; 1985; 35(1):26-7. PubMed ID: 4039150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide.
    Mendanha SA; Anjos JL; Silva AH; Alonso A
    Braz J Med Biol Res; 2012 Jun; 45(6):473-81. PubMed ID: 22473321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization.
    Kostić IT; Ilić VL; Đorđević VB; Bukara KM; Mojsilović SB; Nedović VA; Bugarski DS; Veljović ĐN; Mišić DM; Bugarski BM
    Colloids Surf B Biointerfaces; 2014 Oct; 122():250-259. PubMed ID: 25051307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of calcium, insulin and growth hormone on membrane fluidity. A spin label study of rat adipocyte and human erythrocyte ghosts.
    Sauerheber RD; Lewis UJ; Esgate JA; Gordon LM
    Biochim Biophys Acta; 1980 Apr; 597(2):292-304. PubMed ID: 6245691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.