These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9718368)

  • 21. Repeated, protein-encoding heterochromatic genes cause inactivation of a juxtaposed euchromatic gene.
    Tulin AV; Naumova NM; Aravin AA; Gvozdev VA
    FEBS Lett; 1998 Apr; 425(3):513-6. PubMed ID: 9563524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo chromatin accessibility correlates with gene silencing in Drosophila.
    Boivin A; Dura JM
    Genetics; 1998 Dec; 150(4):1539-49. PubMed ID: 9832530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modifiers of terminal deficiency-associated position effect variegation in Drosophila.
    Donaldson KM; Lui A; Karpen GH
    Genetics; 2002 Mar; 160(3):995-1009. PubMed ID: 11901117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene inactivation in Drosophila mediated by the Polycomb gene product or by position-effect variegation does not involve major changes in the accessibility of the chromatin fibre.
    Schlossherr J; Eggert H; Paro R; Cremer S; Jack RS
    Mol Gen Genet; 1994 May; 243(4):453-62. PubMed ID: 7911223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila.
    Strukov YG; Sural TH; Kuroda MI; Sedat JW
    PLoS Biol; 2011 Jan; 9(1):e1000574. PubMed ID: 21264350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosome association of minichromosome maintenance proteins in Drosophila mitotic cycles.
    Su TT; O'Farrell PH
    J Cell Biol; 1997 Oct; 139(1):13-21. PubMed ID: 9314525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles.
    Cryderman DE; Morris EJ; Biessmann H; Elgin SC; Wallrath LL
    EMBO J; 1999 Jul; 18(13):3724-35. PubMed ID: 10393187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis.
    Steffensen S; Coelho PA; Cobbe N; Vass S; Costa M; Hassan B; Prokopenko SN; Bellen H; Heck MM; Sunkel CE
    Curr Biol; 2001 Mar; 11(5):295-307. PubMed ID: 11267866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila.
    Girton JR; Johansen KM
    Adv Genet; 2008; 61():1-43. PubMed ID: 18282501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel protein localized to the fibrillar compartment of the nucleolus and to the brush border of a secretory cell.
    Sun X; Zhao J; Jin S; Palka K; Visa N; Aissouni Y; Daneholt B; Alzhanova-Ericsson AT
    Eur J Cell Biol; 2002 Mar; 81(3):125-37. PubMed ID: 11998864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Drosophila nuclear lamina protein YA binds to DNA and histone H2B with four domains.
    Yu J; Wolfner MF
    Mol Biol Cell; 2002 Feb; 13(2):558-69. PubMed ID: 11854412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Inactivation of reporter genes by cloned heterochromatic repeats of Drosophila melanogaster is accompanied by chromatin compaction].
    Naumova NM; Olenkina OM; Gvozdev VA
    Genetika; 2003 May; 39(5):682-6. PubMed ID: 12838615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chromatin remodelling factor dATRX is involved in heterochromatin formation.
    Bassett AR; Cooper SE; Ragab A; Travers AA
    PLoS One; 2008 May; 3(5):e2099. PubMed ID: 18461125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Drosophila jumonji gene encodes a JmjC-containing nuclear protein that is required for metamorphosis.
    Sasai N; Kato Y; Kimura G; Takeuchi T; Yamaguchi M
    FEBS J; 2007 Dec; 274(23):6139-51. PubMed ID: 17970746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Functional Motifs for the Targeted Localization of Proteins to the Nucleolus in
    Ogienko AA; Korepina MO; Pindyurin AV; Omelina ES
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The winged-helix transcription factor JUMU regulates development, nucleolus morphology and function, and chromatin organization of Drosophila melanogaster.
    Hofmann A; Brünner M; Schwendemann A; Strödicke M; Karberg S; Klebes A; Saumweber H; Korge G
    Chromosome Res; 2010 Apr; 18(3):307-24. PubMed ID: 20213139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster.
    Messmer S; Franke A; Paro R
    Genes Dev; 1992 Jul; 6(7):1241-54. PubMed ID: 1628830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development.
    Tulin A; Stewart D; Spradling AC
    Genes Dev; 2002 Aug; 16(16):2108-19. PubMed ID: 12183365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila.
    Emmons RB; Duncan D; Estes PA; Kiefel P; Mosher JT; Sonnenfeld M; Ward MP; Duncan I; Crews ST
    Development; 1999 Sep; 126(17):3937-45. PubMed ID: 10433921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trans-suppression of terminal deficiency-associated position effect variegation in a Drosophila minichromosome.
    Donaldson KM; Karpen GH
    Genetics; 1997 Feb; 145(2):325-37. PubMed ID: 9071587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.