These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9718574)

  • 1. Analysis of electrical phenomena accompanying the growth of colonies of cultured mammalian cells: a mathematical model.
    Aslanidi KB; Aslanidi OV; Mornev OA
    Membr Cell Biol; 1998; 11(6):771-92. PubMed ID: 9718574
    [No Abstract]   [Full Text] [Related]  

  • 2. Coordination of cell growth and cell division: a mathematical modeling study.
    Qu Z; Weiss JN; MacLellan WR
    J Cell Sci; 2004 Aug; 117(Pt 18):4199-207. PubMed ID: 15280433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural stem cells of the mammalian forebrain.
    Gregg CT; Shingo T; Weiss S
    Symp Soc Exp Biol; 2001; (53):1-19. PubMed ID: 12063843
    [No Abstract]   [Full Text] [Related]  

  • 4. [A systemic model of reproductive death of mammalian cells. Postulates of the model and mathematical equations of survival].
    Obaturov GM
    Radiobiologiia; 1988; 28(5):640-3. PubMed ID: 3194495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllability of excitable systems.
    Pernarowski M
    Bull Math Biol; 2001 Jan; 63(1):167-84. PubMed ID: 11146881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical models of cell colonization of uniformly growing domains.
    Landman KA; Pettet GJ; Newgreen DF
    Bull Math Biol; 2003 Mar; 65(2):235-62. PubMed ID: 12675331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress.
    Davies KJ
    IUBMB Life; 1999 Jul; 48(1):41-7. PubMed ID: 10791914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balance of cell proliferation and death among dynamic populations: a mathematical model.
    Miller MW
    J Neurobiol; 2003 Nov; 57(2):172-82. PubMed ID: 14556283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spherical colonies as in vitro tumor model (author's transl)].
    Aramaki R; Yoshinaga H
    Fukuoka Igaku Zasshi; 1979 Feb; 70(2):44-7. PubMed ID: 428902
    [No Abstract]   [Full Text] [Related]  

  • 10. Determinants and rate laws of growth and death of hybridoma cells in continuous culture.
    Zeng AP; Deckwer WD; Hu WS
    Biotechnol Bioeng; 1998 Mar; 57(6):642-54. PubMed ID: 10099244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.
    Zámborszky J; Hong CI; Csikász Nagy A
    J Biol Rhythms; 2007 Dec; 22(6):542-53. PubMed ID: 18057329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Th contribution of interfacial phenomena to transient electrical behaviour in epithelial membranes.
    Bowen SP; Dinno MA
    Prog Clin Biol Res; 1981; 73():269-82. PubMed ID: 7323086
    [No Abstract]   [Full Text] [Related]  

  • 13. Integration of K+ and Cl- currents regulate steady-state and dynamic membrane potentials in cultured rat microglia.
    Newell EW; Schlichter LC
    J Physiol; 2005 Sep; 567(Pt 3):869-90. PubMed ID: 16020460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple nonlinear model of electrical activity in the intestine.
    Aliev RR; Richards W; Wikswo JP
    J Theor Biol; 2000 May; 204(1):21-8. PubMed ID: 10772846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general mathematical framework to model generation structure in a population of asynchronously dividing cells.
    León K; Faro J; Carneiro J
    J Theor Biol; 2004 Aug; 229(4):455-76. PubMed ID: 15246784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of regulatory mechanisms in yeast colony development.
    Walther T; Reinsch H; Grosse A; Ostermann K; Deutsch A; Bley T
    J Theor Biol; 2004 Aug; 229(3):327-38. PubMed ID: 15234200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian cell physiology.
    Thomas JN
    Bioprocess Technol; 1990; 10():93-145. PubMed ID: 1367074
    [No Abstract]   [Full Text] [Related]  

  • 18. A quantitative model of gastric smooth muscle cellular activation.
    Corrias A; Buist ML
    Ann Biomed Eng; 2007 Sep; 35(9):1595-607. PubMed ID: 17486452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data integration approach for cell cycle analysis oriented to model simulation in systems biology.
    Alfieri R; Merelli I; Mosca E; Milanesi L
    BMC Syst Biol; 2007 Aug; 1():35. PubMed ID: 17678529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.