These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9719360)

  • 1. Immunocytochemical changes of cytoskeleton components and calmodulin in the frog cerebellum and optic tectum during hibernation.
    Pisu MB; Scherini E; Bernocchi G
    J Chem Neuroanat; 1998 Aug; 15(2):63-73. PubMed ID: 9719360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cerebral neurons of Helix aspersa during hibernation. Changes in the cytochemical detection of calmodulin, cytoskeletal components and phosphatases.
    Vignola C; Fenoglio C; Scherini E; Bernocchi G
    Tissue Cell; 1995 Apr; 27(2):185-96. PubMed ID: 7539946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin organization in frog Purkinje neurons during the annual cycle: cytochemical and ultrastructural studies.
    Barni S; Bernocchi G; Biggiogera M
    Basic Appl Histochem; 1983; 27(2):129-40. PubMed ID: 6604520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calretinin-immunoreactive elements in the retina and optic tectum of the frog, Rana esculenta.
    Gábriel R; Völgyi B; Pollák E
    Brain Res; 1998 Jan; 782(1-2):53-62. PubMed ID: 9519249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid content in several brain regions of the active and hibernating frog, Rana esculenta.
    Watanabe M; Shimada M; Watanabe H; Nakanishi M
    Comp Biochem Physiol B; 1990; 97(3):605-10. PubMed ID: 2286071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell proliferation and death in the brain of active and hibernating frogs.
    Cerri S; Bottiroli G; Bottone MG; Barni S; Bernocchi G
    J Anat; 2009 Aug; 215(2):124-31. PubMed ID: 19531087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hibernation induces changes in the metacerebral neurons of Cornu aspersum: distribution and co-localization of cytoskeletal and calcium-binding proteins.
    Gattoni G; Insolia V; Bernocchi G
    Invert Neurosci; 2018 Oct; 18(4):13. PubMed ID: 30334231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve.
    Balaratnasingam C; Morgan WH; Johnstone V; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2824-38. PubMed ID: 19168905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vimentin- and GFAP-immunoreactivity in developing and mature neural microvessels. Study in the chicken tectum and cerebellum.
    Virgintino D; Maiorano E; Bertossi M; Pollice L; Ambrosi G; Roncali L
    Eur J Histochem; 1993; 37(4):353-62. PubMed ID: 7510542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration.
    Vecino E; Avila J
    Brain Res Bull; 2001 Sep; 56(2):131-7. PubMed ID: 11704350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in nuclear volume of Purkinje cells in the cerebellum of the water frog (Rana Esculenta L.) in the annual cycle.
    Dziubek K; Lach H; Krawczyk S
    Acta Morphol Acad Sci Hung; 1980; 28(1-2):3-9. PubMed ID: 7004100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of K(+)-p-nitrophenyl phosphatase activity in the urinary bladder of the frog Rana esculenta during hibernation and active life.
    De Piceis Polver P; Fenoglio C; Barni S; Gerzeli G
    Eur J Histochem; 1999; 43(1):55-62. PubMed ID: 10340144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis.
    Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I
    J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody to mammalian neurofilament protein stains somata and dendrites in gymnotid fish.
    Maler L; Leclerc N; Hawkes R
    Brain Res; 1986 Jul; 378(2):337-46. PubMed ID: 3089540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix area activity in the regenerating optic tectum of Rana esculenta.
    del Grande P; Franceschini V; Minelli G; Ciani F
    Z Mikrosk Anat Forsch; 1984; 98(1):72-80. PubMed ID: 6609493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochemical variations in Purkinje neuron nuclei of cerebellar areas with different afferent systems in Rana esculenta. Comparison between activity and hibernation.
    Bernocchi G
    J Hirnforsch; 1985; 26(6):659-65. PubMed ID: 3879258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of immunoreactivity for cytoskeletal (microtubule, microtubule-associated, and neurofilament) proteins in adult human dorsal root ganglia.
    Naves FJ; Huerta JJ; Garcia-Suarez O; Urdangaray N; Esteban I; Del Valle ME; Vega JA
    Anat Rec; 1996 Feb; 244(2):246-56. PubMed ID: 8808399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term persistence, after eye-removal, of unmyelinated fibres in the frog visual pathway.
    Lázár O
    Brain Res; 1980 Oct; 199(1):219-24. PubMed ID: 6967755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of prolactin receptor in frog (Rana ridibunda) dorsal skin during hibernation.
    Sengezer-Inceli M; Murathanoglu O; Castillo SS; Sancar-Bas S; Kaptan E
    Acta Biol Hung; 2011 Dec; 62(4):349-60. PubMed ID: 22119865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in nNOS and NADPH diaphorase in frog retina and tectum after axotomy and FGF-2 application.
    Soto I; López-Roca T; Blagburn JM; Blanco RE
    Brain Res; 2006 Aug; 1103(1):65-75. PubMed ID: 16808907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.