These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9719583)

  • 1. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    Ajay A; Walters WP; Murcko MA
    J Med Chem; 1998 Aug; 41(18):3314-24. PubMed ID: 9719583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scoring scheme for discriminating between drugs and nondrugs.
    Sadowski J; Kubinyi H
    J Med Chem; 1998 Aug; 41(18):3325-9. PubMed ID: 9719584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-free drug-likeness from fragments.
    Ursu O; Oprea TI
    J Chem Inf Model; 2010 Aug; 50(8):1387-94. PubMed ID: 20726597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling blood-brain barrier partitioning using Bayesian neural nets.
    Winkler DA; Burden FR
    J Mol Graph Model; 2004 Jul; 22(6):499-505. PubMed ID: 15182809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drugs and nondrugs: an effective discrimination with topological methods and artificial neural networks.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ
    J Chem Inf Comput Sci; 2003; 43(5):1688-702. PubMed ID: 14502504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms.
    Sorich MJ; Miners JO; McKinnon RA; Winkler DA; Burden FR; Smith PA
    J Chem Inf Comput Sci; 2003; 43(6):2019-24. PubMed ID: 14632453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds.
    Ertl P; Jelfs S; Mühlbacher J; Schuffenhauer A; Selzer P
    J Med Chem; 2006 Jul; 49(15):4568-73. PubMed ID: 16854061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures.
    Niwa T
    J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The properties of known drugs. 1. Molecular frameworks.
    Bemis GW; Murcko MA
    J Med Chem; 1996 Jul; 39(15):2887-93. PubMed ID: 8709122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design strategies for building drug-like chemical libraries.
    Mitchell T; Showell GA
    Curr Opin Drug Discov Devel; 2001 May; 4(3):314-8. PubMed ID: 11560064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1151-7. PubMed ID: 12870906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs.
    Krier M; Hutter MC
    J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descriptors, physical properties, and drug-likeness.
    Brüstle M; Beck B; Schindler T; King W; Mitchell T; Clark T
    J Med Chem; 2002 Aug; 45(16):3345-55. PubMed ID: 12139446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data mining a small molecule drug screening representative subset from NIH PubChem.
    Xie XQ; Chen JZ
    J Chem Inf Model; 2008 Mar; 48(3):465-75. PubMed ID: 18302356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling promiscuity based on in vitro safety pharmacology profiling data.
    Azzaoui K; Hamon J; Faller B; Whitebread S; Jacoby E; Bender A; Jenkins JL; Urban L
    ChemMedChem; 2007 Jun; 2(6):874-80. PubMed ID: 17492703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry.
    Feher M; Schmidt JM
    J Chem Inf Comput Sci; 2003; 43(1):218-27. PubMed ID: 12546556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring CAMD technique performance. 2. How "druglike" are drugs? Implications of Random test set selection exemplified using druglikeness classification models.
    Good AC; Hermsmeier MA
    J Chem Inf Model; 2007; 47(1):110-4. PubMed ID: 17238255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selecting compounds for focused screening using linear discriminant analysis and artificial neural networks.
    Ford MG; Pitt WR; Whitley DC
    J Mol Graph Model; 2004 Jul; 22(6):467-72. PubMed ID: 15182805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.