These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9720256)
21. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions. Trubiano G; Borio D; Ferreira ML Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil. Kahveci D; Xu X Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486 [TBL] [Abstract][Full Text] [Related]
23. Protein engineering and applications of Candida rugosa lipase isoforms. Akoh CC; Lee GC; Shaw JF Lipids; 2004 Jun; 39(6):513-26. PubMed ID: 15554150 [TBL] [Abstract][Full Text] [Related]
24. Esterification synthesis of ethyl oleate in solvent-free system catalyzed by lipase membrane from fermentation broth. Li WN; Chen BQ; Tan TW Appl Biochem Biotechnol; 2011 Jan; 163(1):102-11. PubMed ID: 20661784 [TBL] [Abstract][Full Text] [Related]
25. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate. Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406 [TBL] [Abstract][Full Text] [Related]
26. Effect of different carbon sources on lipase production by Candida rugosa. Dalmau E; Montesinos JL; Lotti M; Casas C Enzyme Microb Technol; 2000 Jun; 26(9-10):657-663. PubMed ID: 10862870 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes. Chang SW; Huang M; Hsieh YH; Luo YT; Wu TT; Tsai CW; Chen CS; Shaw JF Food Chem; 2014 Jul; 155():140-5. PubMed ID: 24594166 [TBL] [Abstract][Full Text] [Related]
28. Media formulation using complex organic nutrients for improved activity, productivity, and yield of Candida rugosa lipase and esterase enzymes. Takac S; Erdem B Prep Biochem Biotechnol; 2009; 39(3):323-41. PubMed ID: 19431047 [TBL] [Abstract][Full Text] [Related]
29. Effect of fermentation conditions in the enzymatic activity and stereoselectivity of crude lipase from Candida rugosa. Sánchez A; De La Casa RM; Sinisterra JV; Valero F; Sánchez-Montero JM Appl Biochem Biotechnol; 1999 Apr; 80(1):65-75. PubMed ID: 15304677 [TBL] [Abstract][Full Text] [Related]
30. Production of lipase by high cell density fed-batch culture of Candida cylindracea. Kim BS; Hou CT Bioprocess Biosyst Eng; 2006 Jun; 29(1):59-64. PubMed ID: 16583200 [TBL] [Abstract][Full Text] [Related]
31. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
32. Promoter analysis and differential expression of the Candida rugosa lipase gene family in response to culture conditions. Hsu KH; Lee GC; Shaw JF J Agric Food Chem; 2008 Mar; 56(6):1992-8. PubMed ID: 18290622 [TBL] [Abstract][Full Text] [Related]
33. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods. Zhang R; Zhao L; Liu R J Photochem Photobiol B; 2016 Oct; 163():40-6. PubMed ID: 27529468 [TBL] [Abstract][Full Text] [Related]
34. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes. Kuo TC; Shaw JF; Lee GC Bioresour Technol; 2015 Sep; 192():54-9. PubMed ID: 26011691 [TBL] [Abstract][Full Text] [Related]
35. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. Lee JH; Kim SB; Park C; Tae B; Han SO; Kim SW Appl Biochem Biotechnol; 2010 May; 161(1-8):365-71. PubMed ID: 19898962 [TBL] [Abstract][Full Text] [Related]
36. A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Mohamad NR; Buang NA; Mahat NA; Lok YY; Huyop F; Aboul-Enein HY; Abdul Wahab R Enzyme Microb Technol; 2015 May; 72():49-55. PubMed ID: 25837507 [TBL] [Abstract][Full Text] [Related]
37. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Yilmaz E; Can K; Sezgin M; Yilmaz M Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857 [TBL] [Abstract][Full Text] [Related]
38. Activation and inhibition of Candida rugosa and Bacillus-related lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Ruiz C; Falcocchio S; Xoxi E; Pastor FI; Diaz P; Saso L Biochim Biophys Acta; 2004 Jun; 1672(3):184-91. PubMed ID: 15182938 [TBL] [Abstract][Full Text] [Related]
39. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase. Sampath C; Belur PD; Iyyasami R Enzyme Microb Technol; 2018 Mar; 110():20-29. PubMed ID: 29310852 [TBL] [Abstract][Full Text] [Related]
40. Production of biodiesel by immobilized Candida sp. lipase at high water content. Tan T; Nie K; Wang F Appl Biochem Biotechnol; 2006 Feb; 128(2):109-16. PubMed ID: 16484720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]