These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9721001)

  • 1. A method for assessing muscle fatigue during sprint exercise in humans using a friction-loaded cycle ergometer.
    Hautier CA; Belli A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):231-5. PubMed ID: 9721001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inertia correction and resistive load on fatigue during repeated sprints on a friction-loaded cycle ergometer.
    Bogdanis G; Papaspyrou A; Lakomy H; Nevill M
    J Sports Sci; 2008 Nov; 26(13):1437-45. PubMed ID: 18923956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of aerobic exercise on the torque-velocity relationship in cycling.
    Buttelli O; Vandewalle H; Jouanin JC; Seck D; Monod H
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):499-503. PubMed ID: 9202945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer.
    Pearcey GE; Murphy JR; Behm DG; Hay DC; Power KE; Button DC
    Muscle Nerve; 2015 Apr; 51(4):569-79. PubMed ID: 25043506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer.
    Linossier MT; Dormois D; Geyssant A; Denis C
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):491-8. PubMed ID: 9202944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle coordination changes during intermittent cycling sprints.
    Billaut F; Basset FA; Falgairette G
    Neurosci Lett; 2005 Jun; 380(3):265-9. PubMed ID: 15862899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular fatigue of the elbow flexors during repeated maximal arm cycling sprints: the effects of forearm position.
    Lockyer EJ; Buckle NCM; Collins BW; Button DC
    Appl Physiol Nutr Metab; 2021 Jun; 46(6):606-616. PubMed ID: 33296273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.
    Arsac LM; Belli A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):100-6. PubMed ID: 8891507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output.
    Mendez-Villanueva A; Hamer P; Bishop D
    Med Sci Sports Exerc; 2007 Dec; 39(12):2219-25. PubMed ID: 18046194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children.
    Bogdanis GC; Papaspyrou A; Theos A; Maridaki M
    Eur J Appl Physiol; 2007 Oct; 101(3):313-20. PubMed ID: 17602236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of fatigue on EMG/force ratio and cocontraction in cycling.
    Hautier CA; Arsac LM; Deghdegh K; Souquet J; Belli A; Lacour JR
    Med Sci Sports Exerc; 2000 Apr; 32(4):839-43. PubMed ID: 10776904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of repeated sprint exercise in non-motorised treadmill ergometry.
    Hughes MG; Doherty M; Tong RJ; Reilly T; Cable NT
    Int J Sports Med; 2006 Nov; 27(11):900-4. PubMed ID: 16739088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of the torque-velocity relationship after short exhausting cycling exercise.
    Buttelli O; Vandewalle H; Jouanin JC
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):249-51. PubMed ID: 10453928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity.
    Mendez-Villanueva A; Hamer P; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(4):411-9. PubMed ID: 18368419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between maximal power and maximal torque-velocity using an electronic ergometer.
    Buttelli O; Vandewalle H; Pérès G
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):479-83. PubMed ID: 8803510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid recovery of power output in females.
    Cherry PW; Lakomy HK; Boobis LH; Nevill ME
    Acta Physiol Scand; 1998 Sep; 164(1):79-87. PubMed ID: 9777028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.