These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9721094)

  • 1. Metallic CsI at pressures of up to 220 gigapascals.
    Eremets MI; Shimizu K; Kobayashi TC; Amaya K
    Science; 1998 Aug; 281(5381):1333-5. PubMed ID: 9721094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature superconductivity in a carbonaceous sulfur hydride.
    Snider E; Dasenbrock-Gammon N; McBride R; Debessai M; Vindana H; Vencatasamy K; Lawler KV; Salamat A; Dias RP
    Nature; 2020 Oct; 586(7829):373-377. PubMed ID: 33057222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray Diffraction to 302 Gigapascals: High-Pressure Crystal Structure of Cesium Iodide.
    Mao HK; Hemley RJ; Chen LC; Shu JF; Finger LW; Wu Y
    Science; 1989 Nov; 246(4930):649-51. PubMed ID: 17833419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconductivity in boron.
    Eremets MI; Struzhkin VV; Mao H; Hemley RJ
    Science; 2001 Jul; 293(5528):272-4. PubMed ID: 11452118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconductivity at 250 K in lanthanum hydride under high pressures.
    Drozdov AP; Kong PP; Minkov VS; Besedin SP; Kuzovnikov MA; Mozaffari S; Balicas L; Balakirev FF; Graf DE; Prakapenka VB; Greenberg E; Knyazev DA; Tkacz M; Eremets MI
    Nature; 2019 May; 569(7757):528-531. PubMed ID: 31118520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The most incompressible metal osmium at static pressures above 750 gigapascals.
    Dubrovinsky L; Dubrovinskaia N; Bykova E; Bykov M; Prakapenka V; Prescher C; Glazyrin K; Liermann HP; Hanfland M; Ekholm M; Feng Q; Pourovskii LV; Katsnelson MI; Wills JM; Abrikosov IA
    Nature; 2015 Sep; 525(7568):226-9. PubMed ID: 26302297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a new phase of dense hydrogen above 325 gigapascals.
    Dalladay-Simpson P; Howie RT; Gregoryanz E
    Nature; 2016 Jan; 529(7584):63-7. PubMed ID: 26738591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.
    Drozdov AP; Eremets MI; Troyan IA; Ksenofontov V; Shylin SI
    Nature; 2015 Sep; 525(7567):73-6. PubMed ID: 26280333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability.
    Palmer A; Silevitch DM; Feng Y; Wang Y; Jaramillo R; Banerjee A; Ren Y; Rosenbaum TF
    Rev Sci Instrum; 2015 Sep; 86(9):093901. PubMed ID: 26429451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures at megabar pressures determined by use of the cornell synchrotron source.
    Vohra YK; Brister KE; Weir ST; Duclos SJ; Ruoff AL
    Science; 1986 Mar; 231(4742):1136-8. PubMed ID: 17818543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconductivity in dense lithium.
    Struzhkin VV; Eremets MI; Gan W; Mao HK; Hemley RJ
    Science; 2002 Nov; 298(5596):1213-5. PubMed ID: 12386338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallization and electrical conductivity of hydrogen in Jupiter.
    Nellis WJ; Weir ST; Mitchell AC
    Science; 1996 Aug; 273(5277):936-8. PubMed ID: 8688072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and bonding changes in cesium iodide at high pressures.
    Knittle E; Jeanloz R
    Science; 1984 Jan; 223(4631):53-6. PubMed ID: 17752990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen.
    Loubeyre P; Occelli F; Dumas P
    Nature; 2020 Jan; 577(7792):631-635. PubMed ID: 31996819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconductivity in hydrogen dominant materials: silane.
    Eremets MI; Trojan IA; Medvedev SA; Tse JS; Yao Y
    Science; 2008 Mar; 319(5869):1506-9. PubMed ID: 18339933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO3 Perovskite at Lower Mantle Pressures.
    Meade C; Mao HK; Hu J
    Science; 1995 Jun; 268(5218):1743-5. PubMed ID: 17834995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (Mg,Fe)SiO3-perovskite stability under lower mantle conditions.
    Serghiou G; Zerr A; Boehler R
    Science; 1998 Jun; 280(5372):2093-5. PubMed ID: 9641909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High pressure superconductivity in iron-based layered compounds studied using designer diamonds.
    Tsoi G; Stemshorn AK; Vohra YK; Wu PM; Hsu FC; Huang YL; Wu MK; Yeh KW; Weir ST
    J Phys Condens Matter; 2009 Jun; 21(23):232201. PubMed ID: 21825575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconductivity of BaLi4 under pressure.
    Schaeffer AM; DeLong MC; Anderson ZW; Talmadge WB; Guruswamy S; Deemyad S
    J Phys Condens Matter; 2013 Sep; 25(37):375701. PubMed ID: 23962954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors?
    Benedetti LR; Nguyen JH; Caldwell WA; Liu H; Kruger M; Jeanloz R
    Science; 1999 Oct; 286(5437):100-2. PubMed ID: 10506552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.