These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9721243)

  • 21. An RNA domain within the 5' untranslated region of the tomato bushy stunt virus genome modulates viral RNA replication.
    Wu B; Vanti WB; White KA
    J Mol Biol; 2001 Jan; 305(4):741-56. PubMed ID: 11162089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cladistic analysis of Tospovirus using molecular characters.
    Dewey RA; Semorile LC; Grau O; Crisci JV
    Mol Phylogenet Evol; 1997 Aug; 8(1):11-32. PubMed ID: 9242593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids.
    Lewandowski DJ; Adkins S
    Virology; 2005 Nov; 342(1):26-37. PubMed ID: 16112159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of new defective interfering RNA species associated with porcine reproductive and respiratory syndrome virus infection.
    Xiao CT; Liu ZH; Yu XL; Ge M; Li RC; Xiao BR; Zhou HR
    Virus Res; 2011 Jun; 158(1-2):33-6. PubMed ID: 21385595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage.
    Resende Rde O; de Haan P; de Avila AC; Kitajima EW; Kormelink R; Goldbach R; Peters D
    J Gen Virol; 1991 Oct; 72 ( Pt 10)():2375-83. PubMed ID: 1919523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention of a small replicase gene segment in tomato bushy stunt virus defective RNAs inhibits their helper-mediated trans-accumulation.
    Qiu W; Park JW; Jackson AO; Scholthof HB
    Virology; 2001 Mar; 281(1):51-60. PubMed ID: 11222095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements.
    Duijsings D; Kormelink R; Goldbach R
    EMBO J; 2001 May; 20(10):2545-52. PubMed ID: 11350944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of sequence elements of tombusvirus-associated defective interfering RNAs required for symptom modulation.
    Hornyik C; Havelda Z; Burgyán J
    Arch Virol; 2006 Mar; 151(3):625-33. PubMed ID: 16328149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of the L protein of tomato spotted wilt virus.
    van Poelwijk F; Boye K; Oosterling R; Peters D; Goldbach R
    Virology; 1993 Nov; 197(1):468-70. PubMed ID: 8212587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variant effects of non-native kissing-loop hairpin palindromes on HIV replication and HIV RNA dimerization: role of stem-loop B in HIV replication and HIV RNA dimerization.
    Laughrea M; Shen N; Jetté L; Wainberg MA
    Biochemistry; 1999 Jan; 38(1):226-34. PubMed ID: 9890902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tomato spotted wilt virus S-segment mRNAs have overlapping 3'-ends containing a predicted stem-loop structure and conserved sequence motif.
    van Knippenberg I; Goldbach R; Kormelink R
    Virus Res; 2005 Jun; 110(1-2):125-31. PubMed ID: 15845263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum.
    Fukuta S; Ohishi K; Yoshida K; Mizukami Y; Ishida A; Kanbe M
    J Virol Methods; 2004 Oct; 121(1):49-55. PubMed ID: 15350732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rubella virus DI RNAs and replicons: requirement for nonstructural proteins acting in cis for amplification by helper virus.
    Tzeng WP; Chen MH; Derdeyn CA; Frey TK
    Virology; 2001 Oct; 289(1):63-73. PubMed ID: 11601918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae.
    Koenig R; Pleij CW; Loss S; Burgermeister W; Aust H; Schiemann J
    Arch Virol; 2004 May; 149(5):903-14. PubMed ID: 15098106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation and selection of coronavirus defective interfering RNA with large open reading frame by RNA recombination and possible editing.
    Kim YN; Lai MM; Makino S
    Virology; 1993 May; 194(1):244-53. PubMed ID: 8386875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary structure-dependent evolution of Cymbidium ringspot virus defective interfering RNA.
    Havelda Z; Dalmay T; Burgyán J
    J Gen Virol; 1997 Jun; 78 ( Pt 6)():1227-34. PubMed ID: 9191912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses.
    Zheng YX; Chen CC; Jan FJ
    Arch Virol; 2011 Mar; 156(3):421-32. PubMed ID: 21161553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo.
    Grdzelishvili VZ; Chapman SN; Dawson WO; Lewandowski DJ
    Virology; 2000 Sep; 275(1):177-92. PubMed ID: 11017798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein.
    Kormelink R; Storms M; Van Lent J; Peters D; Goldbach R
    Virology; 1994 Apr; 200(1):56-65. PubMed ID: 8128638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions.
    White KA; Morris TJ
    J Virol; 1994 Jan; 68(1):14-24. PubMed ID: 8254723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.