These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9721243)
41. Molecular characterisation and phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus. Olivier V; Blanchard P; Chaouch S; Lallemand P; Schurr F; Celle O; Dubois E; Tordo N; Thiéry R; Houlgatte R; Ribière M Virus Res; 2008 Mar; 132(1-2):59-68. PubMed ID: 18079012 [TBL] [Abstract][Full Text] [Related]
42. In vitro translational analysis of genomic, defective, and satellite RNAs of Cryphonectria hypovirus 3-GH2. Yuan W; Hillman BI Virology; 2001 Mar; 281(1):117-23. PubMed ID: 11222102 [TBL] [Abstract][Full Text] [Related]
43. Host effects and sequences essential for accumulation of defective interfering RNAs of cucumber necrosis and tomato bushy stunt tombusviruses. Chang YC; Borja M; Scholthof HB; Jackson AO; Morris TJ Virology; 1995 Jun; 210(1):41-53. PubMed ID: 7793079 [TBL] [Abstract][Full Text] [Related]
44. Nucleotide sequences responsible for generation of internally deleted Sendai virus defective interfering genomes. Re GG; Morgan EM; Kingsbury DW Virology; 1985 Oct; 146(1):27-37. PubMed ID: 2994294 [TBL] [Abstract][Full Text] [Related]
45. Sequence and structure of defective interfering RNAs associated with cucumber necrosis virus infections. Finnen RL; Rochon DM J Gen Virol; 1993 Aug; 74 ( Pt 8)():1715-20. PubMed ID: 8345363 [TBL] [Abstract][Full Text] [Related]
46. Characterization of defective interfering RNAs of Berne virus. Snijder EJ; den Boon JA; Horzinek MC; Spaan WJ J Gen Virol; 1991 Jul; 72 ( Pt 7)():1635-43. PubMed ID: 1856694 [TBL] [Abstract][Full Text] [Related]
47. The fitness of citrus tristeza virus defective RNAs is affected by the lengths of their 5'- and 3'-termini and by the coding capacity. Mawassi M; Satyanarayana T; Albiach-Martí MR; Gowda S; Ayllón MA; Robertson C; Dawson WO Virology; 2000 Sep; 275(1):42-56. PubMed ID: 11017786 [TBL] [Abstract][Full Text] [Related]
48. Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. García-Arriaza J; Ojosnegros S; Dávila M; Domingo E; Escarmís C J Mol Biol; 2006 Jul; 360(3):558-72. PubMed ID: 16797586 [TBL] [Abstract][Full Text] [Related]
49. Defective and wild-type human T-cell leukemia virus type I proviruses: characterization of gene products and trans-interactions between proviruses. Shuh M; Hill SA; Derse D Virology; 1999 Sep; 262(2):442-51. PubMed ID: 10502522 [TBL] [Abstract][Full Text] [Related]
50. Construction and characterization of an aureusvirus defective RNA. Lee PK; White KA Virology; 2014 Mar; 452-453():67-74. PubMed ID: 24606684 [TBL] [Abstract][Full Text] [Related]
51. Phylogenetic analysis of New Zealand tomato spotted wilt virus isolates suggests likely incursion history scenarios and mechanisms for population evolution. Timmerman-Vaughan GM; Lister R; Cooper R; Tang J Arch Virol; 2014 May; 159(5):993-1003. PubMed ID: 24232914 [TBL] [Abstract][Full Text] [Related]
52. Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. Hong Y; Dover SL; Cole TE; Brasier CM; Buck KW Virology; 1999 May; 258(1):118-27. PubMed ID: 10329574 [TBL] [Abstract][Full Text] [Related]
53. Defective interfering influenza RNAs of polymerase 3 gene contain single as well as multiple internal deletions. Sivasubramanian N; Nayak DP Virology; 1983 Jan; 124(2):232-7. PubMed ID: 6823747 [TBL] [Abstract][Full Text] [Related]
54. Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection. Yuan S; Murtaugh MP; Faaberg KS Virology; 2000 Sep; 275(1):158-69. PubMed ID: 11183205 [TBL] [Abstract][Full Text] [Related]
55. Molecular Characteristics of Subgenomic RNAs and the Cap-Dependent Translational Advantage Relative to Corresponding Genomic RNAs of Yang C; Yu C; Zhang Z; Wang D; Yuan X Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499398 [No Abstract] [Full Text] [Related]
56. Sequence relationships among defective interfering influenza viral RNAs. Davis AR; Nayak DP Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3092-6. PubMed ID: 290988 [TBL] [Abstract][Full Text] [Related]
57. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Nixon PL; Giedroc DP Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204 [TBL] [Abstract][Full Text] [Related]
58. Analysis of the Tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation. Geerts-Dimitriadou C; Lu YY; Geertsema C; Goldbach R; Kormelink R PLoS One; 2012; 7(2):e31013. PubMed ID: 22363535 [TBL] [Abstract][Full Text] [Related]
59. HIV-1 viral RNA is selected in the form of monomers that dimerize in a three-step protease-dependent process; the DIS of stem-loop 1 initiates viral RNA dimerization. Song R; Kafaie J; Yang L; Laughrea M J Mol Biol; 2007 Aug; 371(4):1084-98. PubMed ID: 17599354 [TBL] [Abstract][Full Text] [Related]
60. Minimal region sufficient for genome dimerization in the human immunodeficiency virus type 1 virion and its potential roles in the early stages of viral replication. Sakuragi J; Sakuragi S; Shioda T J Virol; 2007 Aug; 81(15):7985-92. PubMed ID: 17507464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]