These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 9721256)
1. Chemical speciation of lead dust associated with primary lead smelting. Spear TM; Svee W; Vincent JH; Stanisich N Environ Health Perspect; 1998 Sep; 106(9):565-71. PubMed ID: 9721256 [TBL] [Abstract][Full Text] [Related]
2. Assessment of particle size distributions of health-relevant aerosol exposures of primary lead smelter workers. Spear TM; Werner MA; Bootland J; Murray E; Ramachandran G; Vincent JH Ann Occup Hyg; 1998 Feb; 42(2):73-80. PubMed ID: 9559567 [TBL] [Abstract][Full Text] [Related]
3. Characterization of particle exposure in ferrochromium and stainless steel production. Järvelä M; Huvinen M; Viitanen AK; Kanerva T; Vanhala E; Uitti J; Koivisto AJ; Junttila S; Luukkonen R; Tuomi T J Occup Environ Hyg; 2016 Jul; 13(7):558-68. PubMed ID: 26950803 [TBL] [Abstract][Full Text] [Related]
4. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler. Harper M; Pacolay B; Hintz P; Andrew ME J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423 [TBL] [Abstract][Full Text] [Related]
5. Metabolic profile and assessment of occupational arsenic exposure in copper- and steel-smelting workers in China. Xi S; Zheng Q; Zhang Q; Sun G Int Arch Occup Environ Health; 2011 Mar; 84(3):347-53. PubMed ID: 21132326 [TBL] [Abstract][Full Text] [Related]
6. Characterization of fugitive material within a primary lead smelter. Ohmsen GS J Air Waste Manag Assoc; 2001 Oct; 51(10):1443-51. PubMed ID: 11686249 [TBL] [Abstract][Full Text] [Related]
7. Use of a Field Portable X-Ray Fluorescence Analyzer for Environmental Exposure Assessment of a Neighborhood in Cairo, Egypt Adjacent to the Site of a Former Secondary Lead Smelter. Menrath W; Zakaria Y; El-Safty A; Clark CS; Roda SM; Elsayed E; Lind C; Pesce J; Peng H J Occup Environ Hyg; 2015; 12(8):555-63. PubMed ID: 26131762 [TBL] [Abstract][Full Text] [Related]
8. [Exposure to total and respirable dust of aluminum and its compounds]. Kondej D; Gaweda E Med Pr; 2008; 59(5):381-6. PubMed ID: 19227883 [TBL] [Abstract][Full Text] [Related]
9. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter. Röllin HB; Theodorou P; Cantrell AC Occup Environ Med; 1996 Jun; 53(6):417-21. PubMed ID: 8758038 [TBL] [Abstract][Full Text] [Related]
10. Metals in dust fractions emitted at mechanical workstations. Kondej D; Gawęda E Int J Occup Saf Ergon; 2012; 18(4):453-60. PubMed ID: 23294651 [TBL] [Abstract][Full Text] [Related]
11. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery. Miller A; Drake PL; Hintz P; Habjan M Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942 [TBL] [Abstract][Full Text] [Related]
12. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications. Liu J; Wang J; Chen Y; Xie X; Qi J; Lippold H; Luo D; Wang C; Su L; He L; Wu Q Environ Pollut; 2016 May; 212():77-89. PubMed ID: 26840520 [TBL] [Abstract][Full Text] [Related]
13. [Characterization of lead size distributions with different process in lead-zinc smelter]. Liang JN; Li WH; Ge Y; Chen J; Song LN; Liu J Huan Jing Ke Xue; 2014 Aug; 35(8):2883-9. PubMed ID: 25338356 [TBL] [Abstract][Full Text] [Related]
14. Lead exposure in children living in a smelter community in region Lagunera, Mexico. García Vargas GG; Rubio Andrade M; Del Razo LM; Borja Aburto V; Vera Aguilar E; Cebrián ME J Toxicol Environ Health A; 2001 Mar; 62(6):417-29. PubMed ID: 11289316 [TBL] [Abstract][Full Text] [Related]
15. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash. Hicks J; Yager J J Occup Environ Hyg; 2006 Aug; 3(8):448-55. PubMed ID: 16862716 [TBL] [Abstract][Full Text] [Related]
16. Lead source and bioaccessibility in windowsill dusts within a Pb smelting-affected area. Xing W; Yang H; Ippolito JA; Zhang Y; Scheckel KG; Li L Environ Pollut; 2020 Nov; 266(Pt 2):115110. PubMed ID: 32622007 [TBL] [Abstract][Full Text] [Related]
17. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries. Hughson GW; Galea KS; Heim KE Ann Occup Hyg; 2010 Jan; 54(1):8-22. PubMed ID: 19759172 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of preventive and control measures for lead exposure in a South African lead-acid battery recycling smelter. Dyosi S J Occup Environ Hyg; 2007 Oct; 4(10):762-9. PubMed ID: 17694442 [TBL] [Abstract][Full Text] [Related]
19. Microscopic and chemical studies of metal particulates in tree bark and attic dust: evidence for historical atmospheric smelter emissions, Humberside, UK. Tye AM; Hodgkinson ES; Rawlins BG J Environ Monit; 2006 Sep; 8(9):904-12. PubMed ID: 16951750 [TBL] [Abstract][Full Text] [Related]
20. [The preparation and characterization of fine dusts carried out in the Clinica del Lavoro di Milano in support of experimental studies]. Occella E; Maddalon G; Peruzzo GF; Foà V Med Lav; 1999; 90(5):704-21. PubMed ID: 10596545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]