BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9721319)

  • 1. Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase.
    Schneider BL; Reitzer LJ
    J Bacteriol; 1998 Sep; 180(17):4739-41. PubMed ID: 9721319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD
    Santos ARS; Gerhardt ECM; Moure VR; Pedrosa FO; Souza EM; Diamanti R; Högbom M; Huergo LF
    J Biol Chem; 2018 May; 293(19):7397-7407. PubMed ID: 29581233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural gene for NAD synthetase in Salmonella typhimurium.
    Hughes KT; Olivera BM; Roth JR
    J Bacteriol; 1988 May; 170(5):2113-20. PubMed ID: 2834324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency.
    Hara N; Yamada K; Terashima M; Osago H; Shimoyama M; Tsuchiya M
    J Biol Chem; 2003 Mar; 278(13):10914-21. PubMed ID: 12547821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism.
    Broach J; Neumann C; Kustu S
    J Bacteriol; 1976 Oct; 128(1):86-98. PubMed ID: 10275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine versus ammonia utilization in the NAD synthetase family.
    De Ingeniis J; Kazanov MD; Shatalin K; Gelfand MS; Osterman AL; Sorci L
    PLoS One; 2012; 7(6):e39115. PubMed ID: 22720044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salmonella typhimurium LT-2 mutants with altered glutamine synthetase levels and amino acid uptake activities.
    Funanage VL; Ayling PD; Dendinger SM; Brenchley JE
    J Bacteriol; 1978 Nov; 136(2):588-96. PubMed ID: 30754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD
    Chuenchor W; Doukov TI; Chang KT; Resto M; Yun CS; Gerratana B
    Nat Commun; 2020 Jan; 11(1):16. PubMed ID: 31911602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.
    Laskoski K; Santos AR; Bonatto AC; Pedrosa FO; Souza EM; Huergo LF
    Arch Microbiol; 2016 May; 198(4):307-13. PubMed ID: 26802007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase.
    Willison JC; Tissot G
    J Bacteriol; 1994 Jun; 176(11):3400-2. PubMed ID: 8195100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium.
    Brenchley JE; Baker CA; Patil LG
    J Bacteriol; 1975 Oct; 124(1):182-9. PubMed ID: 240804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.
    Bieganowski P; Pace HC; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation.
    Ikeda TP; Shauger AE; Kustu S
    J Mol Biol; 1996 Jun; 259(4):589-607. PubMed ID: 8683567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain.
    Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G
    Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste.
    Wojcik M; Seidle HF; Bieganowski P; Brenner C
    J Biol Chem; 2006 Nov; 281(44):33395-402. PubMed ID: 16954203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of the ammonia assimilatory enzymes in Rel+ and Rel- strains of Salmonella typhimurium.
    Sales M; Brenchley JE
    Mol Gen Genet; 1982; 186(2):263-8. PubMed ID: 6287174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria.
    Hu P; Leighton T; Ishkhanova G; Kustu S
    J Bacteriol; 1999 Aug; 181(16):5042-50. PubMed ID: 10438777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An indispensable gene for NAD biosynthesis in Salmonella typhimurium.
    Hughes KT; Ladika D; Roth JR; Olivera BM
    J Bacteriol; 1983 Jul; 155(1):213-21. PubMed ID: 6305909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism.
    Resto M; Yaffe J; Gerratana B
    Biochim Biophys Acta; 2009 Nov; 1794(11):1648-53. PubMed ID: 19647806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium.
    Betteridge PR; Ayling PD
    J Gen Microbiol; 1976 Aug; 96(2):324-34. PubMed ID: 8587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.