These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9721319)

  • 1. Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase.
    Schneider BL; Reitzer LJ
    J Bacteriol; 1998 Sep; 180(17):4739-41. PubMed ID: 9721319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD
    Santos ARS; Gerhardt ECM; Moure VR; Pedrosa FO; Souza EM; Diamanti R; Högbom M; Huergo LF
    J Biol Chem; 2018 May; 293(19):7397-7407. PubMed ID: 29581233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural gene for NAD synthetase in Salmonella typhimurium.
    Hughes KT; Olivera BM; Roth JR
    J Bacteriol; 1988 May; 170(5):2113-20. PubMed ID: 2834324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency.
    Hara N; Yamada K; Terashima M; Osago H; Shimoyama M; Tsuchiya M
    J Biol Chem; 2003 Mar; 278(13):10914-21. PubMed ID: 12547821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism.
    Broach J; Neumann C; Kustu S
    J Bacteriol; 1976 Oct; 128(1):86-98. PubMed ID: 10275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine versus ammonia utilization in the NAD synthetase family.
    De Ingeniis J; Kazanov MD; Shatalin K; Gelfand MS; Osterman AL; Sorci L
    PLoS One; 2012; 7(6):e39115. PubMed ID: 22720044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salmonella typhimurium LT-2 mutants with altered glutamine synthetase levels and amino acid uptake activities.
    Funanage VL; Ayling PD; Dendinger SM; Brenchley JE
    J Bacteriol; 1978 Nov; 136(2):588-96. PubMed ID: 30754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD
    Chuenchor W; Doukov TI; Chang KT; Resto M; Yun CS; Gerratana B
    Nat Commun; 2020 Jan; 11(1):16. PubMed ID: 31911602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.
    Laskoski K; Santos AR; Bonatto AC; Pedrosa FO; Souza EM; Huergo LF
    Arch Microbiol; 2016 May; 198(4):307-13. PubMed ID: 26802007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase.
    Willison JC; Tissot G
    J Bacteriol; 1994 Jun; 176(11):3400-2. PubMed ID: 8195100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium.
    Brenchley JE; Baker CA; Patil LG
    J Bacteriol; 1975 Oct; 124(1):182-9. PubMed ID: 240804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.
    Bieganowski P; Pace HC; Brenner C
    J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation.
    Ikeda TP; Shauger AE; Kustu S
    J Mol Biol; 1996 Jun; 259(4):589-607. PubMed ID: 8683567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain.
    Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G
    Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste.
    Wojcik M; Seidle HF; Bieganowski P; Brenner C
    J Biol Chem; 2006 Nov; 281(44):33395-402. PubMed ID: 16954203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of the ammonia assimilatory enzymes in Rel+ and Rel- strains of Salmonella typhimurium.
    Sales M; Brenchley JE
    Mol Gen Genet; 1982; 186(2):263-8. PubMed ID: 6287174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria.
    Hu P; Leighton T; Ishkhanova G; Kustu S
    J Bacteriol; 1999 Aug; 181(16):5042-50. PubMed ID: 10438777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An indispensable gene for NAD biosynthesis in Salmonella typhimurium.
    Hughes KT; Ladika D; Roth JR; Olivera BM
    J Bacteriol; 1983 Jul; 155(1):213-21. PubMed ID: 6305909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism.
    Resto M; Yaffe J; Gerratana B
    Biochim Biophys Acta; 2009 Nov; 1794(11):1648-53. PubMed ID: 19647806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium.
    Betteridge PR; Ayling PD
    J Gen Microbiol; 1976 Aug; 96(2):324-34. PubMed ID: 8587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.