These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD Chuenchor W; Doukov TI; Chang KT; Resto M; Yun CS; Gerratana B Nat Commun; 2020 Jan; 11(1):16. PubMed ID: 31911602 [TBL] [Abstract][Full Text] [Related]
9. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae. Laskoski K; Santos AR; Bonatto AC; Pedrosa FO; Souza EM; Huergo LF Arch Microbiol; 2016 May; 198(4):307-13. PubMed ID: 26802007 [TBL] [Abstract][Full Text] [Related]
10. The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase. Willison JC; Tissot G J Bacteriol; 1994 Jun; 176(11):3400-2. PubMed ID: 8195100 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. Brenchley JE; Baker CA; Patil LG J Bacteriol; 1975 Oct; 124(1):182-9. PubMed ID: 240804 [TBL] [Abstract][Full Text] [Related]
12. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. Bieganowski P; Pace HC; Brenner C J Biol Chem; 2003 Aug; 278(35):33049-55. PubMed ID: 12771147 [TBL] [Abstract][Full Text] [Related]
14. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain. Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981 [TBL] [Abstract][Full Text] [Related]
15. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste. Wojcik M; Seidle HF; Bieganowski P; Brenner C J Biol Chem; 2006 Nov; 281(44):33395-402. PubMed ID: 16954203 [TBL] [Abstract][Full Text] [Related]
16. The regulation of the ammonia assimilatory enzymes in Rel+ and Rel- strains of Salmonella typhimurium. Sales M; Brenchley JE Mol Gen Genet; 1982; 186(2):263-8. PubMed ID: 6287174 [TBL] [Abstract][Full Text] [Related]
17. Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria. Hu P; Leighton T; Ishkhanova G; Kustu S J Bacteriol; 1999 Aug; 181(16):5042-50. PubMed ID: 10438777 [TBL] [Abstract][Full Text] [Related]
18. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. Hughes KT; Ladika D; Roth JR; Olivera BM J Bacteriol; 1983 Jul; 155(1):213-21. PubMed ID: 6305909 [TBL] [Abstract][Full Text] [Related]
19. An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism. Resto M; Yaffe J; Gerratana B Biochim Biophys Acta; 2009 Nov; 1794(11):1648-53. PubMed ID: 19647806 [TBL] [Abstract][Full Text] [Related]
20. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium. Betteridge PR; Ayling PD J Gen Microbiol; 1976 Aug; 96(2):324-34. PubMed ID: 8587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]