These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 9721640)
1. Isolation and characterization of an active mannanase-producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil. Kataoka N; Tokiwa Y J Appl Microbiol; 1998 Mar; 84(3):357-67. PubMed ID: 9721640 [TBL] [Abstract][Full Text] [Related]
2. Degradation of galactomannan by a Clostridium butyricum strain. Dong XZ; Schyns PJ; Stams AJ Antonie Van Leeuwenhoek; 1991 Aug; 60(2):109-14. PubMed ID: 1666501 [TBL] [Abstract][Full Text] [Related]
3. The effect of a purified guar degrading enzyme on chick growth. Ray S; Pubols MH; McGinnis J Poult Sci; 1982 Mar; 61(3):488-94. PubMed ID: 6283512 [TBL] [Abstract][Full Text] [Related]
4. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group. Nakajima N; Matsuura Y Biosci Biotechnol Biochem; 1997 Oct; 61(10):1739-42. PubMed ID: 9362121 [TBL] [Abstract][Full Text] [Related]
5. Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases. Araujo A; Ward OP J Appl Bacteriol; 1990 Mar; 68(3):253-61. PubMed ID: 2111303 [TBL] [Abstract][Full Text] [Related]
6. Production of beta-mannanase and beta-mannosidase from Aspergillus awamori K4 and their properties. Kurakake M; Komaki T Curr Microbiol; 2001 Jun; 42(6):377-80. PubMed ID: 11381326 [TBL] [Abstract][Full Text] [Related]
7. β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. Malgas S; van Dyk SJ; Pletschke BI Enzyme Microb Technol; 2015 Mar; 70():1-8. PubMed ID: 25659626 [TBL] [Abstract][Full Text] [Related]
8. Production of galacto-manno-oligosaccharides from guar gum by beta-mannanase from Penicillium oxalicum SO. Kurakake M; Sumida T; Masuda D; Oonishi S; Komaki T J Agric Food Chem; 2006 Oct; 54(20):7885-9. PubMed ID: 17002466 [TBL] [Abstract][Full Text] [Related]
9. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Jeon SD; Yu KO; Kim SW; Han SO Appl Microbiol Biotechnol; 2011 Apr; 90(2):565-72. PubMed ID: 21311881 [TBL] [Abstract][Full Text] [Related]
10. Isolation and properties of an endo-β-mannanase-producing Bacillus sp. LX114 capable of degrading guar gum. Jiang B; Sun Z; Hou Y; Yang L; Yang F; Chen X; Li X Prep Biochem Biotechnol; 2016 Jul; 46(5):495-500. PubMed ID: 26467349 [TBL] [Abstract][Full Text] [Related]
11. Production and properties of beta-mannanase by free and immobilized cells of Aspergillus oryzae NRRL 3488. Hashem AM; Ismail AM; El-Refai MA; Abdel-Fattah AF Cytobios; 2001; 105(409):115-30. PubMed ID: 11393772 [TBL] [Abstract][Full Text] [Related]
12. Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer Hypothenemus hampei. Aguilera-Gálvez C; Vásquez-Ospina JJ; Gutiérrez-Sanchez P; Acuña-Zornosa R BMC Res Notes; 2013 Aug; 6():333. PubMed ID: 23965285 [TBL] [Abstract][Full Text] [Related]
13. Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides. Liu J; Basit A; Miao T; Zheng F; Yu H; Wang Y; Jiang W; Cao Y Appl Microbiol Biotechnol; 2018 Dec; 102(23):10027-10041. PubMed ID: 30215129 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Sakai K; Mochizuki M; Yamada M; Shinzawa Y; Minezawa M; Kimoto S; Murata S; Kaneko Y; Ishihara S; Jindou S; Kobayashi T; Kato M; Shimizu M Appl Microbiol Biotechnol; 2017 Apr; 101(8):3237-3245. PubMed ID: 28105485 [TBL] [Abstract][Full Text] [Related]
15. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. von Freiesleben P; Spodsberg N; Blicher TH; Anderson L; Jørgensen H; Stålbrand H; Meyer AS; Krogh KB Enzyme Microb Technol; 2016 Feb; 83():68-77. PubMed ID: 26777252 [TBL] [Abstract][Full Text] [Related]
16. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation. Song Y; Sun W; Fan Y; Xue Y; Liu D; Ma C; Liu W; Mosher W; Luo X; Li Z; Ma W; Zhang T J Agric Food Chem; 2018 Oct; 66(42):11055-11063. PubMed ID: 30351049 [TBL] [Abstract][Full Text] [Related]
17. Rheological properties of guar galactomannan solutions during hydrolysis with galactomannanase and alpha-galactosidase enzyme mixtures. Mahammad S; Comfort DA; Kelly RM; Khan SA Biomacromolecules; 2007 Mar; 8(3):949-56. PubMed ID: 17274652 [TBL] [Abstract][Full Text] [Related]
18. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Srivastava PK; Kapoor M Prep Biochem Biotechnol; 2014; 44(4):392-417. PubMed ID: 24320239 [TBL] [Abstract][Full Text] [Related]
19. A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Kim DY; Ham SJ; Lee HJ; Kim YJ; Shin DH; Rhee YH; Son KH; Park HY Enzyme Microb Technol; 2011 Apr; 48(4-5):365-70. PubMed ID: 22112951 [TBL] [Abstract][Full Text] [Related]
20. A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Regmi S; G C P; Choi YH; Choi YS; Choi JE; Cho SS; Yoo JC Enzyme Microb Technol; 2016 Oct; 92():76-85. PubMed ID: 27542747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]