BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 9721723)

  • 1. D2 dopamine receptors stimulate mitogenesis through pertussis toxin-sensitive G proteins and Ras-involved ERK and SAP/JNK pathways in rat C6-D2L glioma cells.
    Luo Y; Kokkonen GC; Wang X; Neve KA; Roth GS
    J Neurochem; 1998 Sep; 71(3):980-90. PubMed ID: 9721723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of Ras-induced apoptosis by the Rac GTPase.
    Joneson T; Bar-Sagi D
    Mol Cell Biol; 1999 Sep; 19(9):5892-901. PubMed ID: 10454536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D
    Liu H; Acharya S; Sudan SK; Hu L; Wu C; Cao Y; Li H; Zhang X
    FEBS J; 2023 Nov; 290(21):5204-5233. PubMed ID: 37531324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning.
    Crow T; Xue-Bian JJ; Siddiqi V; Kang Y; Neary JT
    J Neurosci; 1998 May; 18(9):3480-7. PubMed ID: 9547255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Nanoscopic Organization of D2L Dopamine Receptor Probed by Quantum Dot Tracking.
    Kovtun O; Torres R; Bellocchio LG; Rosenthal SJ
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G protein inhibitory α subunit 2 is a molecular oncotarget of human glioma.
    Wang Y; Liu F; Wu J; Zhang MQ; Chai JL; Cao C
    Int J Biol Sci; 2023; 19(3):865-879. PubMed ID: 36778118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine, Immunity, and Disease.
    Channer B; Matt SM; Nickoloff-Bybel EA; Pappa V; Agarwal Y; Wickman J; Gaskill PJ
    Pharmacol Rev; 2023 Jan; 75(1):62-158. PubMed ID: 36757901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal-driven glioma growth requires Gαi1 and Gαi3.
    Wang Y; Liu YY; Chen MB; Cheng KW; Qi LN; Zhang ZQ; Peng Y; Li KR; Liu F; Chen G; Cao C
    Theranostics; 2021; 11(17):8535-8549. PubMed ID: 34373757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Regulatory Role of PRRX1 in Cancer Epithelial-Mesenchymal Transition.
    Du W; Liu X; Yang M; Wang W; Sun J
    Onco Targets Ther; 2021; 14():4223-4229. PubMed ID: 34295164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function.
    Belkacemi L; Darmani NA
    Pharmacol Res; 2020 Nov; 161():105124. PubMed ID: 32814171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Dopamine Receptors in the Anticancer Activity of ONC201.
    Kline CLB; Ralff MD; Lulla AR; Wagner JM; Abbosh PH; Dicker DT; Allen JE; El-Deiry WS
    Neoplasia; 2018 Jan; 20(1):80-91. PubMed ID: 29216597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells.
    Li Y; Wang W; Wang F; Wu Q; Li W; Zhong X; Tian K; Zeng T; Gao L; Liu Y; Li S; Jiang X; Du G; Zhou Y
    J Mol Cell Biol; 2017 Aug; 9(4):302-314. PubMed ID: 28486630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocytosis following dopamine D
    Shioda N; Yabuki Y; Wang Y; Uchigashima M; Hikida T; Sasaoka T; Mori H; Watanabe M; Sasahara M; Fukunaga K
    Mol Psychiatry; 2017 Aug; 22(8):1205-1222. PubMed ID: 27922607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Immune Equilibrium and Schizophrenia Have Similar Interferon-γ, Tumor Necrosis Factor-α, and Interleukin Expression: A Tumor Model of Schizophrenia.
    Brown JS
    Schizophr Bull; 2016 Nov; 42(6):1407-1417. PubMed ID: 27169466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation.
    Sung YM; Wilkins AD; Rodriguez GJ; Wensel TG; Lichtarge O
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3539-44. PubMed ID: 26979958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTORC2/rictor signaling disrupts dopamine-dependent behaviors via defects in striatal dopamine neurotransmission.
    Dadalko OI; Siuta M; Poe A; Erreger K; Matthies HJ; Niswender K; Galli A
    J Neurosci; 2015 Jun; 35(23):8843-54. PubMed ID: 26063917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine signaling in reward-related behaviors.
    Baik JH
    Front Neural Circuits; 2013; 7():152. PubMed ID: 24130517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.
    Basu D; Tian Y; Bhandari J; Jiang JR; Hui P; Johnson RL; Mishra RK
    PLoS One; 2013; 8(8):e70736. PubMed ID: 23940634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine and renal function and blood pressure regulation.
    Armando I; Villar VA; Jose PA
    Compr Physiol; 2011 Jul; 1(3):1075-117. PubMed ID: 23733636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine receptor signaling and current and future antipsychotic drugs.
    Boyd KN; Mailman RB
    Handb Exp Pharmacol; 2012; (212):53-86. PubMed ID: 23129328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.