BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 9721869)

  • 41. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development.
    Swingle MR; Honkanen RE
    Curr Med Chem; 2019; 26(15):2634-2660. PubMed ID: 29737249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Keeping the centrosome cycle on track. Genome stability.
    Winey M
    Curr Biol; 1996 Aug; 6(8):962-4. PubMed ID: 8805324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A New Mode of Mitotic Surveillance.
    Lambrus BG; Holland AJ
    Trends Cell Biol; 2017 May; 27(5):314-321. PubMed ID: 28188027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer.
    Zhang Q; Fan Z; Zhang L; You Q; Wang L
    J Med Chem; 2021 Jul; 64(13):8916-8938. PubMed ID: 34156850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Forcing dividing cancer cells to die; low-dose drug combinations to prevent spindle pole clustering.
    Ducrey E; Castrogiovanni C; Meraldi P; Nowak-Sliwinska P
    Apoptosis; 2021 Jun; 26(5-6):248-252. PubMed ID: 33870441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of cantharidin and cantharidin derivates on tumour cells.
    Liu D; Chen Z
    Anticancer Agents Med Chem; 2009 May; 9(4):392-6. PubMed ID: 19442040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cantharidin-based small molecules as potential therapeutic agents.
    Puerto Galvis CE; Vargas Méndez LY; Kouznetsov VV
    Chem Biol Drug Des; 2013 Nov; 82(5):477-99. PubMed ID: 23809227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The molecular basis of drug-induced G2 arrest in mammalian cells.
    Rao PN
    Mol Cell Biochem; 1980 Jan; 29(1):47-57. PubMed ID: 6154231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biotherapeutic potential and synthesis of okadaic acid.
    Forsyth CJ; Dounay AB; Sabes SF; Urbanek RA
    Ernst Schering Res Found Workshop; 2000; (32):57-102. PubMed ID: 11077606
    [No Abstract]   [Full Text] [Related]  

  • 50. Small molecule inhibitors of serine/threonine protein phosphatases.
    McCluskey A; Sakoff JA
    Mini Rev Med Chem; 2001 May; 1(1):43-55. PubMed ID: 12369990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein phosphatase inhibition: structure based design. Towards new therapeutic agents.
    Sakoff JA; McCluskey A
    Curr Pharm Des; 2004; 10(10):1139-59. PubMed ID: 15078146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity.
    Cheng A; Balczon R; Zuo Z; Koons JS; Walsh AH; Honkanen RE
    Cancer Res; 1998 Aug; 58(16):3611-9. PubMed ID: 9721869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of p53 in the response to mitotic spindle damage.
    Meek DW
    Pathol Biol (Paris); 2000 Apr; 48(3):246-54. PubMed ID: 10858957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fostriecin: a review of the preclinical data.
    de Jong RS; de Vries EG; Mulder NH
    Anticancer Drugs; 1997 Jun; 8(5):413-8. PubMed ID: 9215602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fostriecin: chemistry and biology.
    Lewy DS; Gauss CM; Soenen DR; Boger DL
    Curr Med Chem; 2002 Nov; 9(22):2005-32. PubMed ID: 12369868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of protein phosphatase type-2A in the Xenopus cell cycle: initiation of the G2/M transition.
    Lee TH
    Semin Cancer Biol; 1995 Aug; 6(4):203-9. PubMed ID: 8541515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]     [New Search]
    of 3.