BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9721920)

  • 1. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus.
    Mullany PM; Lynch MA
    Neuroreport; 1998 Aug; 9(11):2489-94. PubMed ID: 9721920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of tyrosine receptor kinase plays a role in expression of long-term potentiation in the rat dentate gyrus.
    Maguire C; Casey M; Kelly A; Mullany PM; Lynch MA
    Hippocampus; 1999; 9(5):519-26. PubMed ID: 10560922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that nerve growth factor plays a role in long-term potentiation in the rat dentate gyrus.
    Kelly A; Conroy S; Lynch MA
    Neuropharmacology; 1998; 37(4-5):561-70. PubMed ID: 9704997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of p42 mitogen-activated protein kinase by arachidonic acid and trans-1-amino-cyclopentyl-1,3- dicarboxylate impacts on long-term potentiation in the dentate gyrus in the rat: analysis of age-related changes.
    McGahon B; Maguire C; Kelly A; Lynch MA
    Neuroscience; 1999; 90(4):1167-75. PubMed ID: 10338287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin.
    Kelly A; Lynch MA
    Neuropharmacology; 2000 Feb; 39(4):643-51. PubMed ID: 10728885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficits in nerve growth factor release and tyrosine receptor kinase phosphorylation are associated with age-related impairment in long-term potentiation in the dentate gyrus.
    Kelly A; Maguire C; Lynch MA
    Neuroscience; 2000; 95(2):359-65. PubMed ID: 10658615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein.
    Casey M; Maguire C; Kelly A; Gooney MA; Lynch MA
    Hippocampus; 2002; 12(3):377-85. PubMed ID: 12099488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An associativity requirement for locus coeruleus-induced long-term potentiation in the dentate gyrus of the urethane-anesthetized rat.
    Reid AT; Harley CW
    Exp Brain Res; 2010 Jan; 200(2):151-9. PubMed ID: 19644680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB.
    Gooney M; Lynch MA
    J Neurochem; 2001 Jun; 77(5):1198-207. PubMed ID: 11389170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the interaction between arachidonic acid and metabotropic glutamate receptor activation reveals that phospholipase C acts as a coincidence detector in the expression of long-term potentiation in the rat dentate gyrus.
    McGahon B; Lynch MA
    Hippocampus; 1998; 8(1):48-56. PubMed ID: 9519886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel beta-adrenergic- and protein synthesis-dependent mammalian plasticity mechanism.
    Walling SG; Harley CW
    J Neurosci; 2004 Jan; 24(3):598-604. PubMed ID: 14736844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CB1 receptor antagonist, SR141716A, prevents high-frequency stimulation-induced reduction of feedback inhibition in the rat dentate gyrus following perforant path stimulation in vivo.
    Sokal DM; Benetti C; Girlanda E; Large CH
    Brain Res; 2008 Aug; 1223():50-8. PubMed ID: 18599027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The P38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-1beta on long-term potentiation in the rat dentate gyrus in vitro.
    Coogan AN; O'Neill LA; O'Connor JJ
    Neuroscience; 1999; 93(1):57-69. PubMed ID: 10430470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in protein synthesis and synthesis of the synaptic vesicle protein, synaptophysin, in entorhinal cortex following induction of long-term potentiation in dentate gyrus: an age-related study in the rat.
    Mullany P; Lynch MA
    Neuropharmacology; 1997 Jul; 36(7):973-80. PubMed ID: 9257941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels.
    Aksoy-Aksel A; Manahan-Vaughan D
    Neuroscience; 2015 Nov; 309():191-9. PubMed ID: 25791230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD.
    Kelly A; Lynch MA
    Neuroreport; 1998 Dec; 9(18):4087-91. PubMed ID: 9926852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus.
    Lynch MA; Voss KL; Rodriguez J; Bliss TV
    Neuroscience; 1994 May; 60(1):1-5. PubMed ID: 7914357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous activation and opioid modulation of long-term potentiation in the dentate gyrus and the hippocampal CA3 region after stimulation of the perforant pathway in freely moving rats.
    Krug M; Brödemann R; Wagner M
    Brain Res; 2001 Sep; 913(1):68-77. PubMed ID: 11532248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of N-methyl-D-aspartate induces long-term potentiation in the medial perforant path and long-term depression in the lateral perforant path of the rat dentate gyrus in vitro.
    Rush AM; Rowan MJ; Anwyl R
    Neurosci Lett; 2001 Feb; 298(3):175-8. PubMed ID: 11165435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chloramine-T on long-term potentiation at synapses between perforant path and dentate gyrus in hippocampus of rats in vivo.
    Yang J; Hu ZL; Jiang B; Ni L; Jin Y; Chen JG; Wang F
    Neurotoxicology; 2011 Mar; 32(2):199-205. PubMed ID: 21241739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.