These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 972203)

  • 1. Recovery from deafferentation by cricket interneurons after reinnervation by their peripheral field.
    Murphey RK; Matsumoto SG; Mendenhall B
    J Comp Neurol; 1976 Oct; 169(3):335-46. PubMed ID: 972203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deafferentation slows the growth of specific dendrites of identified giant interneurons.
    Murphey RK; Mendenhall B; Palka J; Edwards JS
    J Comp Neurol; 1975 Feb; 159(3):407-18. PubMed ID: 1112917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons.
    Lee SC; Krasne FB
    J Comp Neurol; 1993 Jan; 327(2):271-88. PubMed ID: 8425945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms responsible for changes observed in response properties of partially deafferented insect interneurons.
    Murphey RK; Levine RB
    J Neurophysiol; 1980 Feb; 43(2):367-82. PubMed ID: 7381526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afferent input regulates the formation of distal dendritic branches.
    Mizrahi A; Libersat F
    J Comp Neurol; 2002 Oct; 452(1):1-10. PubMed ID: 12205705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of inhibitory synaptic input to cricket sensory interneurons as a consequence of partial deafferentation.
    Levine RB; Murphey RK
    J Neurophysiol; 1980 Feb; 43(2):383-94. PubMed ID: 7381527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic and synaptic properties of neurons in the vocal-control nucleus IMAN from in vitro slice preparations of juvenile and adult zebra finches.
    Bottjer SW; Brady JD; Walsh JP
    J Neurobiol; 1998 Dec; 37(4):642-58. PubMed ID: 9858265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interneurons of the crayfish brain: the relationship between dendrite location and afferent input.
    Glantz RM; Kirk M; Viancour T
    J Neurobiol; 1981 Jul; 12(4):311-28. PubMed ID: 7252483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAergic inhibition in the neostriatum.
    Wilson CJ
    Prog Brain Res; 2007; 160():91-110. PubMed ID: 17499110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of proprioceptive inputs to DPG interneurons in the cockroach.
    Murrain M; Ritzmann RE
    J Neurobiol; 1988 Sep; 19(6):552-70. PubMed ID: 3171576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual pathways for tactile sensory information to thoracic interneurons in the cockroach.
    Pollack AJ; Ritzmann RE; Watson JT
    J Neurobiol; 1995 Jan; 26(1):33-46. PubMed ID: 7714524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A topographic map of sensory cell terminal arborizations in the cricket CNS; correlation with birthday and position in a sensory array.
    Murphey RK; Jacklet A; Schuster L
    J Comp Neurol; 1980 May; 191(1):53-64. PubMed ID: 7400391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.