These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9722277)

  • 21. Contrasting properties of neurons in two parts of the primary motor cortex of the awake rat.
    Donoghue JP
    Brain Res; 1985 Apr; 333(1):173-7. PubMed ID: 3995285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training.
    Ghosh S; Koh AH; Ring A
    Somatosens Mot Res; 2004 Jun; 21(2):99-115. PubMed ID: 15370091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site.
    Stark E; Asher I; Abeles M
    J Neurophysiol; 2007 May; 97(5):3351-64. PubMed ID: 17360824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor cortex is functionally organized as a set of spatially distinct representations for complex movements.
    Brown AR; Teskey GC
    J Neurosci; 2014 Oct; 34(41):13574-85. PubMed ID: 25297087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling task-specific neuronal ensembles improves decoding of grasp.
    Smith RJ; Soares AB; Rouse AG; Schieber MH; Thakor NV
    J Neural Eng; 2018 Jun; 15(3):036006. PubMed ID: 29393065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents.
    Boychuk JA; Farrell JS; Palmer LA; Singleton AC; Pittman QJ; Teskey GC
    J Physiol; 2017 Jan; 595(1):247-263. PubMed ID: 27568501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats.
    Touvykine B; Elgbeili G; Quessy S; Dancause N
    J Neurophysiol; 2020 Apr; 123(4):1355-1368. PubMed ID: 32130080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.
    Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y
    J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control.
    Martin JH; Cooper SE; Hacking A; Ghez C
    J Neurophysiol; 2000 Apr; 83(4):1886-99. PubMed ID: 10758100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats.
    Maggiolini E; Viaro R; Franchi G
    Eur J Neurosci; 2008 May; 27(10):2733-46. PubMed ID: 18547253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural features of the reach and grasp.
    Robertson EM
    Motor Control; 2000 Jan; 4(1):117-23. PubMed ID: 10733291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional organization of thalamic projections to the motor cortex. An anatomical and electrophysiological study in the rat.
    Cicirata F; Angaut P; Cioni M; Serapide MF; Papale A
    Neuroscience; 1986 Sep; 19(1):81-99. PubMed ID: 3024065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.
    Soma S; Saiki A; Yoshida J; RĂ­os A; Kawabata M; Sakai Y; Isomura Y
    J Neurosci; 2017 Nov; 37(45):10904-10916. PubMed ID: 28972128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural population dynamics in motor cortex are different for reach and grasp.
    Suresh AK; Goodman JM; Okorokova EV; Kaufman M; Hatsopoulos NG; Bensmaia SJ
    Elife; 2020 Nov; 9():. PubMed ID: 33200745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal convergence in the pedunculopontine tegmental nucleus: Motor, sensory and theta-frequency inputs influence activity of single neurons.
    Lu X; Wickens JR; Hyland BI
    Eur J Neurosci; 2024 Jul; 60(1):3643-3658. PubMed ID: 38698531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat.
    Bundy DT; Guggenmos DJ; Murphy MD; Nudo RJ
    PLoS One; 2019; 14(10):e0219034. PubMed ID: 31665145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extending the Cortical Grasping Network: Pre-supplementary Motor Neuron Activity During Vision and Grasping of Objects.
    Lanzilotto M; Livi A; Maranesi M; Gerbella M; Barz F; Ruther P; Fogassi L; Rizzolatti G; Bonini L
    Cereb Cortex; 2016 Dec; 26(12):4435-4449. PubMed ID: 27733538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional reorganization of the rat motor cortex following motor skill learning.
    Kleim JA; Barbay S; Nudo RJ
    J Neurophysiol; 1998 Dec; 80(6):3321-5. PubMed ID: 9862925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primary motor cortex neuronal discharge during reach-to-grasp: controlling the hand as a unit.
    Mason CR; Gomez JE; Ebner TJ
    Arch Ital Biol; 2002 Jul; 140(3):229-36. PubMed ID: 12173526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.