These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9722431)

  • 21. Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation.
    Canessa M; Fabry ME; Nagel RL
    Blood; 1987 Dec; 70(6):1861-6. PubMed ID: 3676517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloride transport in red blood cells of lamprey lampetra fluviatilis: evidence for a novel anion-exchange system.
    Bogdanova A; Sherstobitov A; g
    J Exp Biol; 1998 Jun; 201 (Pt 12)():693-700. PubMed ID: 9450978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium channels of the lamprey erythrocyte membrane exhibit a high selectivity to K+ over Rb+: a comparative study of 86Rb and 41K transport.
    Gusev GP; Fleishman DG; Nikiforov VA; Sherstobitov AO
    Gen Physiol Biophys; 1997 Sep; 16(3):273-84. PubMed ID: 9452948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygenation-activated K fluxes in trout red blood cells.
    Nielsen OB; Lykkeboe G; Cossins AR
    Am J Physiol; 1992 Nov; 263(5 Pt 1):C1057-64. PubMed ID: 1443098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of pH regulation in lamprey (Lampetra fluviatilis) red blood cells.
    Nikinmaa M; Kunnamo-Ojala T; Railo E
    J Exp Biol; 1986 May; 122():355-67. PubMed ID: 3088194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease.
    Brugnara C; Kopin AS; Bunn HF; Tosteson DC
    J Clin Invest; 1985 May; 75(5):1608-17. PubMed ID: 3998150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of oxygenation upon the Cl-dependent K flux pathway in equine red cells.
    Honess NA; Gibson JS; Cossins AR
    Pflugers Arch; 1996 Jun; 432(2):270-7. PubMed ID: 8662303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.
    Berenbrink M; Völkel S; Heisler N; Nikinmaa M
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):69-80. PubMed ID: 10878100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deoxygenation-induced cation fluxes in sickle cells: relationship between net potassium efflux and net sodium influx.
    Joiner CH; Dew A; Ge DL
    Blood Cells; 1988; 13(3):339-58. PubMed ID: 3382745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beta-adrenergic stimulation of volume-sensitive chloride transport in lamprey erythrocytes.
    Nikinmaa M; Salama A; Bogdanova A; Virkki LV
    Physiol Biochem Zool; 2001; 74(1):45-51. PubMed ID: 11226013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The role of potassium and chlorine ions in the gas-transport function of the erythrocytes].
    Pieshkova LV
    Fiziol Zh (1994); 1997; 43(1-2):40-9. PubMed ID: 9221118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of urea and oxygen tension on K flux in sickle cells.
    Culliford SJ; Ellory JC; Gibson JS; Speake PF
    Pflugers Arch; 1998 Apr; 435(5):740-2. PubMed ID: 9479028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes.
    Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV
    Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Transport of monovalent cations into erythrocytes of rabbits with experimental hypercholesterolemia: correlation with plasma cholesterol].
    Makarov VL; Kuznetsov SR; Churina SK; Sokolova AI
    Biokhimiia; 1994 Jul; 59(7):1011-9. PubMed ID: 7948411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of ion transport perturbations caused by hu MDR 1 protein overexpression.
    Hoffman MM; Roepe PD
    Biochemistry; 1997 Sep; 36(37):11153-68. PubMed ID: 9287158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion transport in the intestine of Gobius niger in both isotonic and hypotonic conditions.
    Trischitta F; Denaro MG; Faggio C
    J Exp Zool A Comp Exp Biol; 2004 Jan; 301(1):49-62. PubMed ID: 14695688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.