These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 9722529)

  • 21. Generation and recycling of radicals from phenolic antioxidants.
    Kagan VE; Serbinova EA; Packer L
    Arch Biochem Biophys; 1990 Jul; 280(1):33-9. PubMed ID: 2162153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.
    Björnstedt M; Kumar S; Holmgren A
    J Biol Chem; 1992 Apr; 267(12):8030-4. PubMed ID: 1569062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis.
    Schallreuter KU; Wood JM
    Biochem Biophys Res Commun; 1986 Apr; 136(2):630-7. PubMed ID: 2423087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferritin-dependent radical generation in rat liver homogenates.
    Rousseau I; Puntarulo S
    Toxicology; 2009 Oct; 264(3):155-61. PubMed ID: 19651187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of thioredoxin reductase activity in rat liver supernatant.
    Hill KE; McCollum GW; Burk RF
    Anal Biochem; 1997 Nov; 253(1):123-5. PubMed ID: 9356150
    [No Abstract]   [Full Text] [Related]  

  • 26. An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins.
    Mouithys-Mickalad A; Deby C; Deby-Dupont G; Lamy M
    Biometals; 1998 Apr; 11(2):81-8. PubMed ID: 9542060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free radical reduction mechanisms in mouse epidermis skin homogenates.
    Fuchs J; Mehlhorn RJ; Packer L
    J Invest Dermatol; 1989 Nov; 93(5):633-40. PubMed ID: 2551971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen.
    Arteel GE; Briviba K; Sies H
    Chem Res Toxicol; 1999 Mar; 12(3):264-9. PubMed ID: 10077489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial uptake and recycling of ascorbic acid.
    Li X; Cobb CE; Hill KE; Burk RF; May JM
    Arch Biochem Biophys; 2001 Mar; 387(1):143-53. PubMed ID: 11368176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of glutathione, ascorbate recycling, and free radical scavenging in human erythrocytes exposed to filtered cigarette smoke.
    Maranzana A; Mehlhorn RJ
    Arch Biochem Biophys; 1998 Feb; 350(2):169-82. PubMed ID: 9473290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monoascorbate free radical-dependent oxidation-reduction reactions of liver Golgi apparatus membranes.
    Navas P; Sun I; Crane FL; Morré DM; Morré DJ
    J Bioenerg Biomembr; 2010 Apr; 42(2):181-7. PubMed ID: 20229035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase.
    Holmgren A; Lyckeborg C
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5149-52. PubMed ID: 6933551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADPH and oxidized thioredoxin mediate redox interconversion of calf-liver and Escherichia coli thioredoxin reductase.
    Martínez-Galisteo E; García-Alfonso C; Alicia Padilla C; Antonio Bárcena J; López-Barea J
    Mol Cell Biochem; 1992 Jan; 109(1):61-9. PubMed ID: 1319549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous-flow ESR study.
    Pietri S; Culcasi M; Stella L; Cozzone PJ
    Eur J Biochem; 1990 Nov; 193(3):845-54. PubMed ID: 2174367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct detection of ascorbyl radical in experimental brain injury: microdialysis and an electron spin resonance spectroscopic study.
    Kihara T; Sakata S; Ikeda M
    J Neurochem; 1995 Jul; 65(1):282-6. PubMed ID: 7790872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH.
    Shi X; Rojanasakul Y; Gannett P; Liu K; Mao Y; Daniel LN; Ahmed N; Saffiotti U
    J Inorg Biochem; 1994 Nov; 56(2):77-86. PubMed ID: 7798895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase. Detection of the glutathione disulfide radical anion and the ascorbyl radical.
    Ramakrishna Rao DN; Fischer V; Mason RP
    J Biol Chem; 1990 Jan; 265(2):844-7. PubMed ID: 2153116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dehydroascorbate reduction.
    Wells WW; Xu DP
    J Bioenerg Biomembr; 1994 Aug; 26(4):369-77. PubMed ID: 7844111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of superoxide and ascorbyl radicals in the circulation of animals under oxidative stress.
    Koyama K; Takatsuki K; Inoue M
    Arch Biochem Biophys; 1994 Mar; 309(2):323-8. PubMed ID: 8135544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.