These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9722560)

  • 21. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface.
    Strasser F; Dey J; Eftink MR; Plapp BV
    Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The increase in human antithrombin III tryptophan fluorescence produced by heparin.
    Einarsson R
    Biochim Biophys Acta; 1978 May; 534(1):165-8. PubMed ID: 656463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the heparin-binding domain of human antithrombin III with V8 protease.
    Liu CS; Chang JY
    Eur J Biochem; 1987 Sep; 167(2):247-52. PubMed ID: 3305015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction.
    Olson ST; Srinivasan KR; Björk I; Shore JD
    J Biol Chem; 1981 Nov; 256(21):11073-9. PubMed ID: 7287752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior of antithrombin III isoforms on immobilized heparins. Evidence that the isoforms bind to different numbers of low-affinity heparin sites.
    Carlson TH; Babcock T; Atencio AC; Levinson C; Mora HR
    J Biol Chem; 1988 Feb; 263(5):2187-94. PubMed ID: 3339006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydration effects of heparin on antithrombin probed by osmotic stress.
    McGee MP; Liang J; Luba J
    Biophys J; 2002 Feb; 82(2):1040-9. PubMed ID: 11806943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The N-terminal segment of antithrombin acts as a steric gate for the binding of heparin.
    Fitton HL; Skinner R; Dafforn TR; Jin L; Pike RN
    Protein Sci; 1998 Mar; 7(3):782-8. PubMed ID: 9541411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change.
    Turk B; Brieditis I; Bock SC; Olson ST; Björk I
    Biochemistry; 1997 Jun; 36(22):6682-91. PubMed ID: 9184148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that arginine-129 and arginine-145 are located within the heparin binding site of human antithrombin III.
    Sun XJ; Chang JY
    Biochemistry; 1990 Sep; 29(38):8957-62. PubMed ID: 2271571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The anticoagulant activation of antithrombin by heparin.
    Jin L; Abrahams JP; Skinner R; Petitou M; Pike RN; Carrell RW
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14683-8. PubMed ID: 9405673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amelioration of the severity of heparin-binding antithrombin mutations by posttranslational mosaicism.
    Martínez-Martínez I; Navarro-Fernández J; Østergaard A; Gutiérrez-Gallego R; Padilla J; Bohdan N; Miñano A; Pascual C; Martínez C; de la Morena-Barrio ME; Aguila S; Pedersen S; Kristensen SR; Vicente V; Corral J
    Blood; 2012 Jul; 120(4):900-4. PubMed ID: 22498748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmission of conformational change from the heparin binding site to the reactive center of antithrombin.
    Gettins PG; Fan B; Crews BC; Turko IV; Olson ST; Streusand VJ
    Biochemistry; 1993 Aug; 32(33):8385-9. PubMed ID: 8357789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictions of the secondary structure of antithrombin III and the location of the heparin-binding site.
    Villanueva GB
    J Biol Chem; 1984 Feb; 259(4):2531-6. PubMed ID: 6698980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the conformational dynamics of specific regions of porcine pancreatic phospholipase A2 from a time-resolved fluorescence study of a genetically inserted single tryptophan residue.
    Kuipers OP; Vincent M; Brochon JC; Verheij HM; de Haas GH; Gallay J
    Biochemistry; 1991 Sep; 30(36):8771-85. PubMed ID: 1888737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heparin binding site, conformational change, and activation of antithrombin.
    Evans DL; Marshall CJ; Christey PB; Carrell RW
    Biochemistry; 1992 Dec; 31(50):12629-42. PubMed ID: 1366018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.