These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 9722651)

  • 1. A phylogenomic study of the MutS family of proteins.
    Eisen JA
    Nucleic Acids Res; 1998 Sep; 26(18):4291-300. PubMed ID: 9722651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins.
    Culligan KM; Meyer-Gauen G; Lyons-Weiler J; Hays JB
    Nucleic Acids Res; 2000 Jan; 28(2):463-71. PubMed ID: 10606644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues.
    New L; Liu K; Crouse GF
    Mol Gen Genet; 1993 May; 239(1-2):97-108. PubMed ID: 8510668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis.
    Hunter N; Borts RH
    Genes Dev; 1997 Jun; 11(12):1573-82. PubMed ID: 9203583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene.
    Paquis-Flucklinger V; Santucci-Darmanin S; Paul R; Saunières A; Turc-Carel C; Desnuelle C
    Genomics; 1997 Sep; 44(2):188-94. PubMed ID: 9299235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins.
    Reenan RA; Kolodner RD
    Genetics; 1992 Dec; 132(4):963-73. PubMed ID: 1459447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MutS homologs in mammalian cells.
    Fishel R; Wilson T
    Curr Opin Genet Dev; 1997 Feb; 7(1):105-13. PubMed ID: 9024626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation and diversity of MutS proteins.
    Sachadyn P
    Mutat Res; 2010 Dec; 694(1-2):20-30. PubMed ID: 20833188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional divergence of MutS2 from bacterial MutS1 and eukaryotic MSH4-MSH5 homologs.
    Kang J; Huang S; Blaser MJ
    J Bacteriol; 2005 May; 187(10):3528-37. PubMed ID: 15866941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved properties between functionally distinct MutS homologs in yeast.
    Pochart P; Woltering D; Hollingsworth NM
    J Biol Chem; 1997 Nov; 272(48):30345-9. PubMed ID: 9374523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction.
    Ross-Macdonald P; Roeder GS
    Cell; 1994 Dec; 79(6):1069-80. PubMed ID: 8001134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual recognition-incision enzymes might be involved in mismatch repair and meiosis.
    Malik HS; Henikoff S
    Trends Biochem Sci; 2000 Sep; 25(9):414-8. PubMed ID: 10973051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion.
    Pont-Kingdon G; Okada NA; Macfarlane JL; Beagley CT; Watkins-Sims CD; Cavalier-Smith T; Clark-Walker GD; Wolstenholme DR
    J Mol Evol; 1998 Apr; 46(4):419-31. PubMed ID: 9541536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains.
    Brown EW; LeClerc JE; Li B; Payne WL; Cebula TA
    J Bacteriol; 2001 Mar; 183(5):1631-44. PubMed ID: 11160094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA mismatch repair in plants. An Arabidopsis thaliana gene that predicts a protein belonging to the MSH2 subfamily of eukaryotic MutS homologs.
    Culligan KM; Hays JB
    Plant Physiol; 1997 Oct; 115(2):833-9. PubMed ID: 9342879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved domains in DNA repair proteins and evolution of repair systems.
    Aravind L; Walker DR; Koonin EV
    Nucleic Acids Res; 1999 Mar; 27(5):1223-42. PubMed ID: 9973609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
    Antony E; Khubchandani S; Chen S; Hingorani MM
    DNA Repair (Amst); 2006 Feb; 5(2):153-62. PubMed ID: 16214425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A carboxy terminal domain of the hMSH-2 gene product is sufficient for binding specific mismatched oligonucleotides.
    Whitehouse A; Taylor GR; Deeble J; Phillips SE; Meredith DM; Markham AF
    Biochem Biophys Res Commun; 1996 Aug; 225(1):289-95. PubMed ID: 8769132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.