These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9722653)
1. A capillary electrophoresis mobility shift assay for protein-DNA binding affinities free in solution. Foulds GJ; Etzkorn FA Nucleic Acids Res; 1998 Sep; 26(18):4304-5. PubMed ID: 9722653 [TBL] [Abstract][Full Text] [Related]
2. Interaction of a bZip oligopeptide model with oligodeoxyribonucleotides modelling DNA binding sites. The effect of flanking sequences. Votavová H; Hodanová K; Arnold L; Sponar J J Biomol Struct Dyn; 1997 Dec; 15(3):587-96. PubMed ID: 9440004 [TBL] [Abstract][Full Text] [Related]
3. Effects of phosphate neutralization on the shape of the AP-1 transcription factor binding site in duplex DNA. Tomky LA; Strauss-Soukup JK; Maher LJ Nucleic Acids Res; 1998 May; 26(10):2298-305. PubMed ID: 9580678 [TBL] [Abstract][Full Text] [Related]
4. DNA recognition by peptide oligomers. Yamane J; Makino K; Morii T; Sugiura Y Nucleic Acids Symp Ser; 1995; (34):143-4. PubMed ID: 8841593 [TBL] [Abstract][Full Text] [Related]
5. Selection of a high-affinity DNA pool for a bZip protein with an out-of-phase alignment of the basic region relative to the leucine zipper. Lee Y; Gurnon DG; Hollenbeck JJ; Oakley MG Bioorg Med Chem; 2001 Sep; 9(9):2335-9. PubMed ID: 11553473 [TBL] [Abstract][Full Text] [Related]
6. Coupled folding and site-specific binding of the GCN4-bZIP transcription factor to the AP-1 and ATF/CREB DNA sites studied by microcalorimetry. Berger C; Jelesarov I; Bosshard HR Biochemistry; 1996 Nov; 35(47):14984-91. PubMed ID: 8942664 [TBL] [Abstract][Full Text] [Related]
7. Kinetic studies of sequence-specific binding of GCN4-bZIP peptides to DNA strands immobilized on a 27-MHz quartz-crystal microbalance. Okahata Y; Niikura K; Sugiura Y; Sawada M; Morii T Biochemistry; 1998 Apr; 37(16):5666-72. PubMed ID: 9548952 [TBL] [Abstract][Full Text] [Related]
8. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation. Lajmi AR; Wallace TR; Shin JA Protein Expr Purif; 2000 Apr; 18(3):394-403. PubMed ID: 10733895 [TBL] [Abstract][Full Text] [Related]
9. A general strategy to determine a target DNA sequence of a short peptide: application to a d-peptide. Morii T; Tanaka T; Sato S; Hagihara M; Aizawa Y; Makino K J Am Chem Soc; 2002 Jan; 124(2):180-1. PubMed ID: 11782163 [TBL] [Abstract][Full Text] [Related]
10. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization. Tan S; Hunziker Y; Pellegrini L; Richmond TJ J Mol Biol; 2000 Apr; 297(4):947-59. PubMed ID: 10736229 [TBL] [Abstract][Full Text] [Related]
11. 1H, 15N and 13C assignments of the DNA binding domain of transcription factor Mbp1 from S. cerevisiae in both its free and the DNA bound forms, and 1H assignments of the free DNA. McIntosh PB; Taylor IA; Smerdon SJ; Frenkiel TA; Lane AN J Biomol NMR; 1999 Apr; 13(4):397-8. PubMed ID: 10353201 [No Abstract] [Full Text] [Related]
12. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA. Metallo SJ; Paolella DN; Schepartz A Nucleic Acids Res; 1997 Aug; 25(15):2967-72. PubMed ID: 9224594 [TBL] [Abstract][Full Text] [Related]
13. DNA-binding affinities of MyoD and E47 homo- and hetero-dimers by capillary electrophoresis mobility shift assay. Foulds GJ; Etzkorn FA J Chromatogr A; 1999 Nov; 862(2):231-6. PubMed ID: 10596981 [TBL] [Abstract][Full Text] [Related]
14. Monomeric and dimeric bZIP transcription factor GCN4 bind at the same rate to their target DNA site. Cranz S; Berger C; Baici A; Jelesarov I; Bosshard HR Biochemistry; 2004 Jan; 43(3):718-27. PubMed ID: 14730976 [TBL] [Abstract][Full Text] [Related]
15. DNA bending by bZIP charge variants: a unified study using electrophoretic phasing and fluorescence resonance energy transfer. Hardwidge PR; Wu J; Williams SL; Parkhurst KM; Parkhurst LJ; Maher LJ Biochemistry; 2002 Jun; 41(24):7732-42. PubMed ID: 12056905 [TBL] [Abstract][Full Text] [Related]
16. DNA-binding domain of GCN4 induces bending of both the ATF/CREB and AP-1 binding sites of DNA. Dragan AI; Liu Y; Makeyeva EN; Privalov PL Nucleic Acids Res; 2004; 32(17):5192-7. PubMed ID: 15459288 [TBL] [Abstract][Full Text] [Related]
17. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. López MC; Smerage JB; Baker HV Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14112-7. PubMed ID: 9826662 [TBL] [Abstract][Full Text] [Related]
19. A thermodynamic study on the formation and stability of DNA duplex at transcription site for DNA binding proteins GCN4. Cao W; Lai L Biophys Chem; 1999 Aug; 80(3):217-26. PubMed ID: 10483711 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics and kinetics of the reaction of a single-chain antibody fragment (scFv) with the leucine zipper domain of transcription factor GCN4. Weber-Bornhauser S; Eggenberger J; Jelesarov I; Bernard A; Berger C; Bosshard HR Biochemistry; 1998 Sep; 37(37):13011-20. PubMed ID: 9737882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]