These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9722976)

  • 21. Estimate of the random match frequency of acquired characteristics in footwear: Part II - Impressions in dust.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):134-150. PubMed ID: 38182308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digitally processing an image of a shoe impression in blood.
    Daniel O; Levi A; Chaikovsky A; Cohen Y
    J Forensic Sci; 2021 May; 66(3):1143-1147. PubMed ID: 33332705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The currently available possibilities for the application of photogrammetry in the forensic medical expertise of the blood stains at the scene of the crime].
    Fetisov VA; Makarov IY; Gusarov AA; Lorents AS; Smirenin SA; Stragis VB
    Sud Med Ekspert; 2017; 60(2):41-44. PubMed ID: 28399086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The experimental study of genetic sex in dried bloodstains by analysis of chromosomes.
    Veljkovic-Milenkovic S; Obradovic M; Baralic I
    Acta Med Leg Soc (Liege); 1984; 34():314-26. PubMed ID: 6086094
    [No Abstract]   [Full Text] [Related]  

  • 25. Estimate of the random match frequency of acquired characteristics in footwear: Part I - Impressions in blood.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):117-133. PubMed ID: 38182307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of multi-resolution 3D techniques in crime scene documentation with bloodstain pattern analysis.
    Hołowko E; Januszkiewicz K; Bolewicki P; Sitnik R; Michoński J
    Forensic Sci Int; 2016 Oct; 267():218-227. PubMed ID: 27649099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQ™ system.
    Bowden A; Fleming R; Harbison S
    Forensic Sci Int Genet; 2011 Jan; 5(1):64-8. PubMed ID: 20457058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glass particles in footwear of members of the public in south-eastern Australia--a survey.
    Roux C; Kirk R; Benson S; Van Haren T; Petterd CI
    Forensic Sci Int; 2001 Feb; 116(2-3):149-56. PubMed ID: 11182266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the variable of pressure in the production of test footwear impressions.
    Farrugia KJ; Riches P; Bandey H; Savage K; NicDaéid N
    Sci Justice; 2012 Sep; 52(3):168-76. PubMed ID: 22841140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperspectral imaging in forensic science: An overview of major application areas.
    Mariotti KC; Ortiz RS; Ferrão MF
    Sci Justice; 2023 May; 63(3):387-395. PubMed ID: 37169464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of non-contact scanning to forensic podiatry: A feasibility study.
    Crowther M; Reidy S; Walker J; Islam M; Thompson T
    Sci Justice; 2021 Jan; 61(1):79-88. PubMed ID: 33357830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning.
    Buck U; Albertini N; Naether S; Thali MJ
    Forensic Sci Int; 2007 Sep; 171(2-3):157-64. PubMed ID: 17161568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison between visible wavelength hyperspectral imaging and digital photography for the detection and identification of bloodstained footwear marks.
    Crowther M; Li B; Thompson T; Islam M
    J Forensic Sci; 2021 Nov; 66(6):2424-2437. PubMed ID: 34363402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The application of TreadMatch scans to aid the process of footwear mark comparison.
    Reel S; Harris R; Reidy S; Chambers J
    Sci Justice; 2022 Sep; 62(5):530-539. PubMed ID: 36336446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for impregnating nylon transfer membranes with leucocrystal violet for enhancing and lifting bloody impressions.
    Michaud AL; Brun-Conti L
    J Forensic Sci; 2004 May; 49(3):511-6. PubMed ID: 15171168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forensic applications of hyperspectral imaging technique: a narrative review.
    Pallocci M; Treglia M; Passalacqua P; Luca L; Zanovello C; Mazzuca D; Guarna F; Gratteri S; Marsella LT
    Med Leg J; 2022 Dec; 90(4):216-220. PubMed ID: 36121069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid histological examination of trace evidence by means of cellophane tape.
    Ishiyama I
    J Forensic Sci; 1981 Jul; 26(3):570-5. PubMed ID: 6166726
    [No Abstract]   [Full Text] [Related]  

  • 38. Assessing the quality of footwear marks recovered from simulated graves.
    Stephens M; Errickson D; Giles SB; Ringrose TJ
    Sci Justice; 2020 Nov; 60(6):512-521. PubMed ID: 33077034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishing state of motion through two-dimensional foot and shoe print analysis: A pilot study.
    Neves FB; Arnold GP; Nasir S; Wang W; MacDonald C; Christie I; Abboud RJ
    Forensic Sci Int; 2018 Mar; 284():176-183. PubMed ID: 29408727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical discrimination of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition techniques.
    Petraco ND; Gambino C; Kubic TA; Olivio D; Petraco N
    J Forensic Sci; 2010 Jan; 55(1):34-41. PubMed ID: 19895540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.