These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 972317)

  • 1. Programmed energy dispersive X-ray analysis of top coats of automotive paint.
    Reeve V; Keener T
    J Forensic Sci; 1976 Oct; 21(4):883-907. PubMed ID: 972317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron FTIR characterisation of automotive primer surfacer paint coatings for forensic purposes.
    Maric M; van Bronswijk W; Lewis SW; Pitts K
    Talanta; 2014 Jan; 118():156-61. PubMed ID: 24274283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis-gas chromatography/mass spectrometry analysis as a useful tool in forensic examination of automotive paint traces.
    Zieba-Palus J; Zadora G; Milczarek JM; Kościelniak P
    J Chromatogr A; 2008 Jan; 1179(1):41-6. PubMed ID: 17931635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEM-EDS analysis and discrimination of forensic soil.
    Cengiz S; Cengiz Karaca A; Cakir I; Bülent Uner H; Sevindik A
    Forensic Sci Int; 2004 Apr; 141(1):33-7. PubMed ID: 15066711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The examination of UV-absorbers in 2-coat metallic and non-metallic automotive paints.
    Stoecklein W; Fujiwara H
    Sci Justice; 1999; 39(3):188-95. PubMed ID: 10795409
    [No Abstract]   [Full Text] [Related]  

  • 6. Multi-Modal Compositional Analysis of Layered Paint Chips of Automobiles by the Combined Application of ATR-FTIR Imaging, Raman Microspectrometry, and SEM/EDX.
    Malek MA; Nakazawa T; Kang HW; Tsuji K; Ro CU
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30965685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation and evaluation of evidence value of styrene acrylic urethane topcoat car paints analysed by pyrolysis-gas chromatography.
    Zieba-Palus J; Zadora G; Milczarek JM
    J Chromatogr A; 2008 Jan; 1179(1):47-58. PubMed ID: 17931637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of organic pigments in coatings: applications to red automotive topcoats. Part III: Raman spectroscopy (NIR FT-Raman).
    Massonnet G; Stoecklein W
    Sci Justice; 1999; 39(3):181-7. PubMed ID: 10795408
    [No Abstract]   [Full Text] [Related]  

  • 9. Automotive body primers: Their application in vehicle identification.
    Deaken D
    J Forensic Sci; 1975 Apr; 20(2):283-7. PubMed ID: 1123598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelets and genetic algorithms applied to search prefilters for spectral library matching in forensics.
    Lavine BK; Mirjankar N; Ryland S; Sandercock M
    Talanta; 2011 Dec; 87():46-52. PubMed ID: 22099647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental analysis by energy dispersive x-ray: a significant factor in the forensic analysis of glass.
    Reeve V; Mathiesen J; Fong W
    J Forensic Sci; 1976 Apr; 21(2):291-306. PubMed ID: 1262829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry.
    Nishiwaki Y; Watanabe S; Shimoda O; Saito Y; Nakanishi T; Terada Y; Ninomiya T; Nakai I
    J Forensic Sci; 2009 May; 54(3):564-70. PubMed ID: 19302400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow curing of aliphatic polyisocyanate paints in automotive refinishing: a potential source for skin exposure.
    Bello D; Sparer J; Redlich CA; Ibrahim K; Stowe MH; Liu Y
    J Occup Environ Hyg; 2007 Jun; 4(6):406-11. PubMed ID: 17474030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of automotive paint clear coats by ultraviolet absorption microspectrophotometry with subsequent chemometric analysis.
    Liszewski EA; Lewis SW; Siegel JA; Goodpaster JV
    Appl Spectrosc; 2010 Oct; 64(10):1122-5. PubMed ID: 20925981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis-gas chromatographic analysis of black paints.
    Schultz BW; Perros TP
    J Assoc Off Anal Chem; 1975 Nov; 58(6):1150-3. PubMed ID: 1194176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ULV malathion on automotive paint finishes.
    Tietze NS; Ruff JP; Hallmon CF; Hester PG; Shaffer KR
    J Am Mosq Control Assoc; 1992 Sep; 8(3):241-6. PubMed ID: 1402860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part II: white paint.
    Bell SE; Fido LA; Speers SJ; Armstrong WJ; Spratt S
    Appl Spectrosc; 2005 Nov; 59(11):1340-6. PubMed ID: 16316511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments.
    Suzuki EM; Carrabba M
    J Forensic Sci; 2001 Sep; 46(5):1053-69. PubMed ID: 11569543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of a standard color coding system to paint in forensic science.
    Fouweather C; May RW; Porter J
    J Forensic Sci; 1976 Jul; 21(3):629-35. PubMed ID: 956751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of 1990s original automotive paint systems: a collaborative study of black nonmetallic base coat/clear coat finishes using infrared spectroscopy.
    Ryland S; Bishea G; Brun-Conti L; Eyring M; Flanagan B; Jergovich T; MacDougall D; Suzuki E
    J Forensic Sci; 2001 Jan; 46(1):31-45. PubMed ID: 11210921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.