BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1733 related articles for article (PubMed ID: 9723960)

  • 41. The potential role of nitric oxide in angiotensin II-receptor blockade.
    Cachofeiro V; Maeso R; Muñoz-Garcia R; Lahera V
    Blood Press Suppl; 1996; 2():29-35. PubMed ID: 8913537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Angiotensin II and prostaglandin interactions on systemic and renal effects of L-NAME in humans.
    Perinotto P; Biggi A; Carra N; Orrico A; Valmadre G; Dall'aglio P; Novarini A; Montanari A
    J Am Soc Nephrol; 2001 Aug; 12(8):1706-1712. PubMed ID: 11461943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Urotensin II is a nitric oxide-dependent vasodilator and natriuretic peptide in the rat kidney.
    Zhang AY; Chen YF; Zhang DX; Yi FX; Qi J; Andrade-Gordon P; de Garavilla L; Li PL; Zou AP
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F792-8. PubMed ID: 12783779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TP receptors regulate renal hemodynamics during angiotensin II slow pressor response.
    Kawada N; Dennehy K; Solis G; Modlinger P; Hamel R; Kawada JT; Aslam S; Moriyama T; Imai E; Welch WJ; Wilcox CS
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F753-9. PubMed ID: 15213069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demonstration of the existence of nitric oxide-independent as well as nitric oxide-dependent vasodilator mechanisms in the in situ renal circulation in near term pregnant rats.
    Chu ZM; Beilin LJ
    Br J Pharmacol; 1997 Sep; 122(2):307-15. PubMed ID: 9313940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of actions of sumatriptan on coronary flow before and after endothelial dysfunction in guinea-pig isolated heart.
    Ellwood AJ; Curtis MJ
    Br J Pharmacol; 1997 Mar; 120(6):1039-48. PubMed ID: 9134215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Renoprotective effects of neuronal NOS-derived nitric oxide and cyclooxygenase-2 metabolites in transgenic rats with inducible malignant hypertension.
    Patterson ME; Mullins JJ; Mitchell KD
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F205-11. PubMed ID: 17977909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mediation by nitric oxide of the carbachol-induced corticosterone secretion in rats.
    Bugajski J; Borycz J; Gadek-Michalska A; Głód R; Bugajski AJ
    J Physiol Pharmacol; 1997 Jun; 48(2):277-84. PubMed ID: 9223031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Verapamil abolishes the preglomerular response to ANG II during intrarenal nitric oxide synthesis inhibition.
    Schnackenberg CG; Granger JP
    Am J Physiol; 1997 May; 272(5 Pt 2):R1670-6. PubMed ID: 9176363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of indomethacin and N omega-nitro-L-arginine methyl ester on the pressure/flow relation in isolated perfused hindlimbs from pregnant and nonpregnant rats.
    Ahokas RA; Friedman SA; Sibai BM
    J Soc Gynecol Investig; 1997; 4(5):229-35. PubMed ID: 9360226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renal functional responses to the 5-HT1A receptor agonist flesinoxan: effects of controlled renal perfusion pressure.
    Chamienia AL; Johns EJ
    J Pharmacol Exp Ther; 1994 Apr; 269(1):215-20. PubMed ID: 8169828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide and prostaglandins in regulation of acid secretory response in rat stomach following injury.
    Takeuchi K; Takehara K; Kaneko T; Okabe S
    J Pharmacol Exp Ther; 1995 Jan; 272(1):357-63. PubMed ID: 7815352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide inhibition causes an exaggerated pressor response in Yucatan miniature swine.
    Vogl HW; Colletti AE; Zambraski EJ
    Lab Anim Sci; 1997 Apr; 47(2):161-6. PubMed ID: 9150495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of nitric oxide in short-term and prolonged effects of angiotensin II on renal hemodynamics.
    Deng X; Welch WJ; Wilcox CS
    Hypertension; 1996 May; 27(5):1173-9. PubMed ID: 8621213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
    Siragy HM; Carey RM
    J Clin Invest; 1997 Jul; 100(2):264-9. PubMed ID: 9218502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Role of nitric oxide in the modulation of the vascular response to angiotensin II in hypertensive rats].
    Sánchez Mendoza A; Vázquez Cruz B; Escalante Acosta BA
    Arch Inst Cardiol Mex; 1996; 66(4):306-12. PubMed ID: 8984951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of angiotensin AT1 and AT2 receptors in mediating the renal effects of angiotensin II in the anaesthetized dog.
    Clark KL; Robertson MJ; Drew GM
    Br J Pharmacol; 1993 May; 109(1):148-56. PubMed ID: 8495237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective inhibition of pressor and haemodynamic effects of NG-nitro-L-arginine by halothane.
    Wang YX; Abdelrahman A; Pang CC
    J Cardiovasc Pharmacol; 1993 Oct; 22(4):571-8. PubMed ID: 7505359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide participates in the renal vasodilatory effect of candesartan in anesthetized rats.
    Demeilliers B; Mimran A; Jover B
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S208-12. PubMed ID: 9892165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 87.