These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 972404)

  • 21. [Regulation problems in the energy metabolism of the myocardium].
    Nägle S
    Klin Wochenschr; 1970 Sep; 48(18):1075-89. PubMed ID: 4931196
    [No Abstract]   [Full Text] [Related]  

  • 22. Beneficial effect of amosulalol and phentolamine on post-hypoxic recovery of contractile force and energy metabolism in rabbit hearts.
    Tanonaka K; Matsumoto M; Minematsu R; Miyake K; Murai R; Takeo S
    Br J Pharmacol; 1989 Jun; 97(2):513-23. PubMed ID: 2569344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental depletion of creatine and phosphocreatine from skeletal muscle.
    Fitch CD; Jellinek M; Mueller EJ
    J Biol Chem; 1974 Feb; 249(4):1060-3. PubMed ID: 4814337
    [No Abstract]   [Full Text] [Related]  

  • 24. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 25. Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction.
    Saks VA; Rosenshtraukh LV; Undrovinas AI; Smirnov VN; Chazov EI
    Biochem Med; 1976 Aug; 16(1):21-36. PubMed ID: 1087559
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney.
    Horn M; Frantz S; Remkes H; Laser A; Urban B; Mettenleiter A; Schnackerz K; Neubauer S
    J Mol Cell Cardiol; 1998 Feb; 30(2):277-84. PubMed ID: 9515004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro studies of beating heart cells in culture. XII. The utilization of ATP and phosphocreatine in oligomycin and 2-deoxyglucose inhibited cells.
    Seraydarian MW; Sato E; Savageau M; Harary I
    Biochim Biophys Acta; 1969 Jun; 180(2):264-70. PubMed ID: 5795469
    [No Abstract]   [Full Text] [Related]  

  • 28. Skeletal myopathy in uremia: abnormal energy metabolism.
    Brautbar N
    Kidney Int Suppl; 1983 Dec; 16():S81-6. PubMed ID: 6376923
    [No Abstract]   [Full Text] [Related]  

  • 29. Human cardiac spectroscopy.
    Bottomley PA; Weiss RG
    MAGMA; 1998 Sep; 6(2-3):157-60. PubMed ID: 9803397
    [No Abstract]   [Full Text] [Related]  

  • 30. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Contractility and energy metabolism in human myocardium in normal state and in various stages of cardiac insufficiency].
    Shevchuk VH; Frantsuzova SB; Horchakova NO; Plyska OI; Babak VV; Arshynnykova LL; Lazoryshynets VV; Iakymovych VV
    Fiziol Zh (1978); 1993; 39(5-6):18-23. PubMed ID: 8045312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of phosphocreatine and ATP in contraction of normal and ischemic heart.
    Kupriyanov VV; Lakomkin VL; Steinschneider AYa ; Novikova NA; Severina MYu ; Kapelko VI; Saks VA
    Biomed Biochim Acta; 1987; 46(8-9):S493-8. PubMed ID: 3435507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Behavior of macroenergetic phosphorus compounds in the tissues in alloxan diabetes under the effect of insulin].
    Mach Z; Pawlik T
    Folia Med Cracov; 1975; 17(1):43-51. PubMed ID: 1140742
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial creatine kinase in mammalian myocardial cells in culture.
    Seraydarian MW; Yang JJ
    Adv Myocardiol; 1982; 3():613-20. PubMed ID: 7170446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 37. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of ACE inhibition and beta-receptor blockade on energy metabolism in rats postmyocardial infarction.
    Hügel S; Horn M; de Groot M; Remkes H; Dienesch C; Hu K; Ertl G; Neubauer S
    Am J Physiol; 1999 Dec; 277(6):H2167-75. PubMed ID: 10600834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creatine deficiency and heart failure.
    Del Franco A; Ambrosio G; Baroncelli L; Pizzorusso T; Barison A; Olivotto I; Recchia FA; Lombardi CM; Metra M; Ferrari Chen YF; Passino C; Emdin M; Vergaro G
    Heart Fail Rev; 2022 Sep; 27(5):1605-1616. PubMed ID: 34618287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.