These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9724412)

  • 1. Cloning and characterization of a nuclear gene encoding a starch-branching enzyme from the marine red alga Gracilaria gracilis.
    Lluisma AO; Ragan MA
    Curr Genet; 1998 Aug; 34(2):105-11. PubMed ID: 9724412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a galactose-1-phosphate uridylyltransferase gene from the marine red alga Gracilaria gracilis.
    Lluisma AO; Ragan MA
    Curr Genet; 1998 Aug; 34(2):112-9. PubMed ID: 9724413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Curr Genet; 1994 Jul; 26(1):79-86. PubMed ID: 7954900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuclear gene and cDNAs encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa: cloning, characterization and phylogenetic analysis.
    Zhou YH; Ragan MA
    Curr Genet; 1995 Sep; 28(4):324-32. PubMed ID: 8590478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the nuclear gene and cDNAs for triosephosphate isomerase of the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Curr Genet; 1995 Sep; 28(4):317-23. PubMed ID: 8590477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the nuclear gene encoding mitochondrial aconitase in the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Plant Mol Biol; 1995 Jul; 28(4):635-46. PubMed ID: 7647296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Curr Genet; 1993; 23(5-6):483-9. PubMed ID: 7916671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural features of the glycogen branching enzyme encoding genes from aspergilli.
    Sasangka P; Matsuno A; Tanaka A; Akasaka Y; Suyama S; Kano S; Miyazaki M; Akao T; Kato M; Kobayashi T; Tsukagoshi N
    Microbiol Res; 2002; 157(4):337-44. PubMed ID: 12501999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the polyubiquitin gene in the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Biochim Biophys Acta; 1995 Apr; 1261(2):215-22. PubMed ID: 7711065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GAPDH gene system of the red alga Chondrus crispus: promoter structures, intron/exon organization, genomic complexity and differential expression of genes.
    Liaud MF; Valentin C; Brandt U; Bouget FY; Kloareg B; Cerff R
    Plant Mol Biol; 1993 Dec; 23(5):981-94. PubMed ID: 8260635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the gene encoding a rice starch branching enzyme.
    Kawasaki T; Mizuno K; Baba T; Shimada H
    Mol Gen Genet; 1993 Feb; 237(1-2):10-6. PubMed ID: 8455548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of starch-branching enzymes and their role in amylopectin biosynthesis.
    Tetlow IJ; Emes MJ
    IUBMB Life; 2014 Aug; 66(8):546-58. PubMed ID: 25196474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756.
    Suzuki R; Koide K; Hayashi M; Suzuki T; Sawada T; Ohdan T; Takahashi H; Nakamura Y; Fujita N; Suzuki E
    Biochim Biophys Acta; 2015 May; 1854(5):476-84. PubMed ID: 25731081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley.
    Sun C; Sathish P; Ahlandsberg S; Jansson C
    Plant Physiol; 1998 Sep; 118(1):37-49. PubMed ID: 9733524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three orthologs in rice, Arabidopsis, and Populus encoding starch branching enzymes (SBEs) are different from other SBE gene families in plants.
    Han Y; Sun FJ; Rosales-Mendoza S; Korban SS
    Gene; 2007 Oct; 401(1-2):123-30. PubMed ID: 17698298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga.
    Tanaka K; Oikawa K; Ohta N; Kuroiwa H; Kuroiwa T; Takahashi H
    Science; 1996 Jun; 272(5270):1932-5. PubMed ID: 8658165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of plastid-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria.
    Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):67-76. PubMed ID: 8219057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn.
    Blauth SL; Yao Y; Klucinec JD; Shannon JC; Thompson DB; Guilitinan MJ
    Plant Physiol; 2001 Mar; 125(3):1396-405. PubMed ID: 11244119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases.
    Valentin K; Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):77-85. PubMed ID: 8219058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of red algae: implications for plastid evolution.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4520-5. PubMed ID: 9114022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.